There are many theories useful for framing CSCW research and they may in principle be irreducible to a single theory. CSCW research explores questions involving numerous distinct—though interacting—phenomena at multiple levels of description. The useful approach may be to clearly distinguish levels such as individual, small-group and community units of analysis, and to differentiate terminology for discussing these different levels. Theory in general has evolved dramatically over the ages, with a trend to extend the unit of cognition beyond the single idea or even the individual mind. Seminal theoretical works influential within CSCW suggest a post-cognitive approach to group cognition as a complement to analyzing cognition of individuals and of communities of practice.


Collaborative Learn Knowledge Building Cooperative Work Individual Cognition Adjacency Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, F., & Aizawa, K. (2008). The bounds of cognition. Malden, MA: Blackwell.Google Scholar
  2. Bakhtin, M. (1986). Speech genres and other late essays (V. McGee, Trans.). Austin, TX: University of Texas Press.Google Scholar
  3. Carroll, J. (Ed.). (2003). HCI models, theories and frameworks: Toward a multidisciplinary science. San Francisco, CA: Morgan Kaufmann Publishers.Google Scholar
  4. Chomsky, N. (1959). Review of verbal behavior, by B. F. Skinner. Language. 35(1), 26–57.CrossRefGoogle Scholar
  5. Chomsky, N. (1969). Aspects of a theory of syntax. Cambridge, MA: MIT Press.Google Scholar
  6. Clark, H. (1996). Using language. Cambridge, UK: Cambridge University Press.Google Scholar
  7. Clark, H., & Brennan, S. (1991). Grounding in communication. In L. Resnick, J. Levine & S. Teasley (Eds.), Perspectives on socially shared cognition. (pp. 127–149). Washington, DC: APA.CrossRefGoogle Scholar
  8. Descartes, R. (1633/1999). Discourse on method and meditations on first philosophy. New York, NY: Hackett.Google Scholar
  9. Dillenbourg, P. (1999). What do you mean by "Collaborative learning"? In P. Dillenbourg (Ed.), Collaborative learning: Cognitive and computational approaches. (pp. 1–16). Amsterdam, NL: Pergamon, Elsevier Science.Google Scholar
  10. Dillenbourg, P., Baker, M., Blaye, A., & O’Malley, C. (1996). The evolution of research on collaborative learning. In P. Reimann & H. Spada (Eds.), Learning in humans and machines: Towards an interdisciplinary learning science. (pp. 189–211). Oxford, UK: Elsevier.Google Scholar
  11. Donald, M. (1991). Origins of the modern mind: Three stages in the evolution of culture and cognition. Cambridge, MA: Harvard University Press.Google Scholar
  12. Dourish, P. (2001). Where the action is: The foundations of embodied interaction. Cambridge, MA: MIT Press.Google Scholar
  13. Ehn, P. (1988). Work-oriented design of computer artifacts. Stockholm, Sweden: Arbetslivscentrum.Google Scholar
  14. Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Helsinki, Finland: Orienta-Kosultit Oy.Google Scholar
  15. Engeström, Y. (1999). Activity theory and individual and social transformation. In Y. Engeström, R. Miettinen & R.-L. Punamäki (Eds.), Perspectives on activity theory. (pp. 19–38). Cambridge, UK: Cambridge University Press.Google Scholar
  16. Engeström, Y. (2008). From teams to knots. Cambridge, UK: Cambridge University Press.Google Scholar
  17. Floyd, C. (1992). Software development and reality construction. In C. Floyd, H. Zuellinghoven, R. Budde & R. Keil-Slawik (Eds.), Software development and reality construction. (pp. 86–100). Berlin, Germany: Springer Verlag.Google Scholar
  18. Gadamer, H.-G. (1960/1988). Truth and method. New York, NY: Crossroads.Google Scholar
  19. Garfinkel, H. (1967). Studies in ethnomethodology. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  20. Garfinkel, H. (2006). Seeing sociologically: The routine grounds of social action. Boulder, CO: Paradigm Publishers.Google Scholar
  21. Gee, J. P. (1992). The social mind: Language, ideology, and social practice. New York, NY: Bergin & Garvey.Google Scholar
  22. Grudin, J. (1994). Eight challenges for developers. Communications of the ACM. 37(1), 93–105.CrossRefGoogle Scholar
  23. Guribye, F. (2005). Infrastructures for learning: Ethnographic inquiries into the social and technical conditions of education and training. Unpublished Dissertation, Ph.D., Department of Information Science and Media Studies, University of Bergen. Bergen, Norway.Google Scholar
  24. Hegel, G. W. F. (1807/1967). Phenomenology of spirit (J. B. Baillie, Trans.). New York, NY: Harper & Row.Google Scholar
  25. Heidegger, M. (1927/1996). Being and time: A translation of Sein und Zeit (J. Stambaugh, Trans.). Albany, NY: SUNY Press.Google Scholar
  26. Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cognition: Toward a new foundation of human-computer interaction research. ACM Transactions on Computer-Human Interaction. 7(2), 174–196.CrossRefGoogle Scholar
  27. Hopper, R. (1992). Telephone conversation. Bloomington, IN: Indiana University Press.Google Scholar
  28. Husserl, E. (1936/1989). The origin of geometry (D. Carr, Trans.). In J. Derrida (Ed.), Edmund Husserl’s origin of geometry: An introduction. (pp. 157–180). Lincoln, NE: University of Nebraska Press.Google Scholar
  29. Hutchins, E. (1996). Cognition in the wild. Cambridge, MA: MIT Press.Google Scholar
  30. Johnson, D. W., & Johnson, R. T. (1989). Cooperation and competition: Theory and research. Edina, MN: Interaction Book Company.Google Scholar
  31. Jones, C., Dirckinck-Holmfeld, L., & Lindström, B. (2006). A relational, indirect, meso-level approach to CSCL design in the next decade. International Journal of Computer-Supported Collaborative Learning. 1(1), 35–56. Doi: http://dx.doi.org/10.1007/s11412–006–6841–7CrossRefGoogle Scholar
  32. Kant, I. (1787/1999). Critique of pure reason. Cambridge, UK: Cambridge University Press.Google Scholar
  33. Kaptelinin, V., & Nardi, B. A. (2006). Acting with technology: Activity theory and interaction design. Cambridge, Mass.: MIT Press.Google Scholar
  34. Kershner, R., Mercer, N., Warwick, P., & Staarman, J. K. (2010). Can the interactive whiteboard support young children’s collaborative communication and thinking in classroom science activities? International Journal of Computer-Supported Collaborative Learning. 5(4).Google Scholar
  35. Latour, B. (1992). Where are the missing masses? The sociology of a few mundane artifacts. In W. E. Bijker & J. Law (Eds.), Shaping technology/building society. (pp. 225–227). Cambridge, MA: MIT Press.Google Scholar
  36. Latour, B. (2007). Reassembling the social: An introduction to actor-network-theory. Cambridge, UK: Cambridge University Press.Google Scholar
  37. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.Google Scholar
  38. Linell, P. (2001). Approaching dialogue: Talk, interaction and contexts in dialogical perspectives. New York, NY: Benjamins.Google Scholar
  39. Linell, P. (2009). Rethinking language, mind, and world dialogically: Interactional and contextual theories of human sense-making. Charlotte, NC: Information Age Publishing.Google Scholar
  40. Looi, C.-K., So, H.-j., Toh, Y., & Chen, W. (2011). CSCL in classrooms: The Singapore experience of synergizing policy, practice and research. International Journal of Computer-Supported Collaborative Learning. Google Scholar
  41. Marx, K. (1867). Das Kapital: Kritik der politischen Oekonomie (Vol. I). Hamburg, Germany: Otto Meisner.Google Scholar
  42. Maturana, H. R., & Varela, F. J. (1987). The tree of knowledge: The biological roots of human understanding. Boston, MA: Shambhala.Google Scholar
  43. Mead, G. H. (1934/1962). Mind, self and society. Chicago, IL: University of Chicago Press.Google Scholar
  44. Mercer, N. (2000). Words and minds. How we use language to think together: Routledge.Google Scholar
  45. Plato. (340 BC/1941). The republic (F. Cornford, Trans.). London, UK: Oxford University Press.Google Scholar
  46. Polanyi, M. (1966). The tacit dimension. Garden City, NY: Doubleday.Google Scholar
  47. Robbins, P., & Aydede, M. (Eds.). (2009). The Cambridge handbook of situated cognition. Cambridge, UK: Cambridge University Press.Google Scholar
  48. Rogoff, B. (1995). Sociocultural activity on three planes. In B. Rogoff, J. Wertsch, P. del Rio & A. Alvarez (Eds.), Sociocultural studies of mind. (pp. 139–164). Cambridge, UK: Cambridge University Press.Google Scholar
  49. Sacks, H. (1962/1995). Lectures on conversation. Oxford, UK: Blackwell.Google Scholar
  50. Sacks, H., Schegloff, E. A., & Jefferson, G. (1974). A simplest systematics for the organization of turn-taking for conversation. Language. 50(4), 696–735. Web: www.jstor.org.CrossRefGoogle Scholar
  51. Scardamalia, M., & Bereiter, C. (1996). Computer support for knowledge-building communities. In T. Koschmann (Ed.), CSCL: Theory and practice of an emerging paradigm. (pp. 249–268). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  52. Schatzki, T. R., Knorr Cetina, K., & Savigny, E. v. (Eds.). (2001). The practice turn in contemporary theory. New York, NY: Routledge.Google Scholar
  53. Schegloff, E. A. (2007). Sequence organization in interaction: A primer in conversation analysis. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  54. Schmidt, K., & Bannon, L. (1992). Taking CSCW seriously: Supporting articulation work. CSCW. 1(1), 7–40.Google Scholar
  55. Schön, D. A. (1983). The reflective practitioner: How professionals think in action. New York, NY: Basic Books.Google Scholar
  56. Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses and mathematizing. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  57. Shannon, C., & Weaver, W. (1949). The mathematical theory of communication. Chicago, IL: University of Illinois Press.MATHGoogle Scholar
  58. Stahl, G. (2006). Group cognition: Computer support for building collaborative knowledge. Cambridge, MA: MIT Press. Web: http://GerryStahl.net/mit/.Google Scholar
  59. Stahl, G. (2009). Studying virtual math teams. New York, NY: Springer. Web: http://GerryStahl.net/vmt/book Doi: http://dx.doi.org/10.1007/978–1-4419–0228–3.MATHCrossRefGoogle Scholar
  60. Stahl, G. (2010a). Group cognition as a foundation for the new science of learning. In M. S. Khine & I. M. Saleh (Eds.), New science of learning: Cognition, computers and collaboration in education. (pp. 23–44). New York, NY: Springer. Web: http://GerryStahl.net/pub/scienceoflearning.pdf.Google Scholar
  61. Stahl, G. (2010b). Guiding group cognition in CSCL. International Journal of Computer-Supported Collaborative Learning. 5(3), 255–258. Doi: http://dx.doi.org/10.1007/s11412–010–9091–7.CrossRefGoogle Scholar
  62. Stahl, G. (2010c). Marx and Heidegger. Philadelphia. PA: Gerry Stahl at Lulu. Web: http://GerryStahl.net/elibrary/marx.Google Scholar
  63. Stahl, G. (2010d). Tacit and explicit understanding. Philadelphia, PA: Gerry Stahl at Lulu. Web: http://GerryStahl.net/elibrary/tacit.Google Scholar
  64. Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning: An historical perspective. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences. (pp. 409–426). Cambridge, UK: Cambridge University Press. Web: http://GerryStahl.net/elibrary/tacit.Google Scholar
  65. Suchman, L. (1987). Plans and situated actions: The problem of human-machine communication. Cambridge, UK: Cambridge University Press.Google Scholar
  66. Teasley, S. D., & Roschelle, J. (1993). Constructing a joint problem space: The computer as a tool for sharing knowledge. In S. P. Lajoie & S. J. Derry (Eds.), Computers as cognitive tools. (pp. 229–258). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  67. Turing, A. (1937). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society. 2(1), 230.CrossRefGoogle Scholar
  68. Vygotsky, L. (1930/1978). Mind in society. Cambridge, MA: Harvard University Press.Google Scholar
  69. Wegerif, R. (2007). Dialogic, education and technology: Expanding the space of learning. New York, NY: Kluwer-Springer.CrossRefGoogle Scholar
  70. Wells, G. (1999). Dialogic inquiry: Towards a socio-cultural practice and theory of education. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  71. Winograd, T., & Flores, F. (1986). Understanding computers and cognition: A new foundation of design. Reading, MA: Addison-Wesley.MATHGoogle Scholar
  72. Wittgenstein, L. (1921/1974). Tractatus logico philosophicus. London, UK: Routledge.Google Scholar
  73. Wittgenstein, L. (1953). Philosophical investigations. New York, NY: Macmillan.Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.The iSchoolDrexel UniversityPhiladelphiaUSA

Personalised recommendations