A Fault Tolerance Framework for Cooperative Robotic Manipulators

  • Adriano A. G. Siqueira
  • Marco H. Terra
  • Marcel Bergerman


In this chapter we present a fault tolerance framework for cooperative manipulators. The fault detection and isolation (FDI) system uses the kinematic constraints of the cooperative system and neural networks to detect and treat four categories of faults: free-swinging joint faults (FSJF), where one or more joints lose actuation and become free-swinging; locked joint faults (LJF), where one or more joints become locked; incorrectly-measured joint position faults (JPF), where the measurement of one or more joint positions is incorrect; and incorrectly-measured joint velocity faults (JVF), where the measurement of one or more joint velocities is incorrect. After the faults are detected by the FDI system, the control system is reconfigured according to the nature of the isolated fault and the manipulation task is resumed.


Radial Basis Function Network Joint Position Residual Vector Cooperative System Joint Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bonitz R, Hsia T (1996) Internal force-based impedance control for cooperating manipulators. IEEE Trans Robot Autom 12(1):78–89CrossRefGoogle Scholar
  2. 2.
    Carignan CR, Akin DL (1988) Cooperative control of two arms in the transport of an inertial load in zero gravity. IEEE Trans Robot Autom 4(4):414–419CrossRefGoogle Scholar
  3. 3.
    Dhillon BS, Fashandi ARM (1997) Robotic systems probabilistic analysis. Microeletron Reliab 37(2):211–224CrossRefGoogle Scholar
  4. 4.
    English JD, Maciejewski AA (1998) Fault tolerance for kinematically redundant manipulators: anticipating free-swinging joint failures. IEEE Trans Robot Autom 14(4):566–575CrossRefGoogle Scholar
  5. 5.
    Goel M, Maciejewski AA, Balakrishnan V (2004) Analyzing unidentified locked-joint failures in kinematically redundant manipulators. J Robot Systs 22(1):15–29CrossRefGoogle Scholar
  6. 6.
    Hassan M, Notash L (2004) Analysis of active joint failure in parallel robot manipulators. J Mech Design 126(6):959–968CrossRefGoogle Scholar
  7. 7.
    Hassan M, Notash L (2005) Design modification of parallel manipulators for optimum fault tolerance to joint jam. Mech Mach Theory 40(5):559–577MATHCrossRefGoogle Scholar
  8. 8.
    Jatta F, Legnani G, Visioli A, Ziliani G (2006) On the use of velocity feedback in hybrid force/velocity control of industrial manipulators. Control Eng Pract 14(9):1045–1055CrossRefGoogle Scholar
  9. 9.
    Liu YH, Xu Y, Bergerman M (1999) Cooperation control of multiple manipulators with passive joints. IEEE Transa Robot Autom 15(2):258–267CrossRefGoogle Scholar
  10. 10.
    Luh JYS, Zheng YF (1987) Constrained relations between two coordinated industrial robots for robot motion control. Int J Robot Res 6(3):60–70CrossRefGoogle Scholar
  11. 11.
    McIntyre ML, Dixon WE, Dawson DM, Walker ID (2005) Fault identification for robot manipulators. IEEE Trans Robot Autom 21(5):1028–1034Google Scholar
  12. 12.
    Miyagi PE, Riascos LAM (2006) Modeling and analysis of fault-tolerant systems for machining operations based on Petri nets. Control Eng Pract 14(4):397–408CrossRefGoogle Scholar
  13. 13.
    Monteverde V, Tosunoglu S (1999) Development and application of a fault tolerance measure for serial and parallel robotic structures. Int J Modeling Simulat 19(1):45–51Google Scholar
  14. 14.
    Schneider H, Frank PM (1996) Observer-based supervision and fault-detection in robots using nonlinear and fuzzy logic residual evaluation. IEEE Trans Control Syst Technol 4(3):274–282CrossRefGoogle Scholar
  15. 15.
    Terra MH, Tinós R (2001) Fault detection and isolation in robotic manipulators via neural networks—a comparison among three architectures for residual analysis. J Robot Syst 18(7):357–374MATHCrossRefGoogle Scholar
  16. 16.
    Tinós R, Terra MH, Bergerman M (2001) Fault detection and isolation in cooperative manipulators via artificial neural networks. In: Proceedings of IEEE Conference on Control Applications, Mexico City, Mexico, pp 988–1003Google Scholar
  17. 17.
    Tinós R, Terra MH, Ishihara JY (2006) Motion and force control of cooperative robotic manipulators with passive joints. IEEE Trans Control Syst Technol 14(4):725–734CrossRefGoogle Scholar
  18. 18.
    Vemuri AT, Polycarpou MM (2004) A methodology for fault diagnosis in robotic systems using neural networks. Robotica 22(4):419–438CrossRefGoogle Scholar
  19. 19.
    Visinsky ML, Cavallaro JR, Walker ID (1994) Robotic fault detection and fault tolerance: a survey. Reliab Eng Syst Safe 46:139–158CrossRefGoogle Scholar
  20. 20.
    Visinsky ML, Cavallaro JR, Walker ID (1995) A dynamic fault tolerance framework for remote robots. IEEE Trans Robot Autom 11(4):477–490CrossRefGoogle Scholar
  21. 21.
    Vukobratovic M, Tuneski A (1998) Mathematical model of multiple manipulators: cooperative compliant manipulation on dynamical environments. Mech Mach Theory 33(8):1211–1239MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Wen T, Kreutz-Delgado K (1992) Motion and force control for multiple robotic manipulators. Automatica 28(4):729–743MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Adriano A. G. Siqueira
    • 1
  • Marco H. Terra
    • 1
  • Marcel Bergerman
    • 2
  1. 1.Engineering School of São CarlosUniversity of São PauloSão CarlosBrazil
  2. 2.CMU Robotics InstitutePittsburghUSA

Personalised recommendations