Advertisement

Underactuated Robot Manipulators

  • Adriano A. G. Siqueira
  • Marco H. Terra
  • Marcel Bergerman
Chapter

Abstract

In this chapter we present the application of the \({\mathcal{H}}_{\infty}\) and adaptive \({\mathcal{H}}_{\infty}\) control methodologies to underactuated robotic manipulators, or manipulators with more joints than actuators. We begin by presenting a taxonomy to classify the different types of underactuation. Next, we present both model-based and non-model-based controller design approaches that guarantee robustness while the manipulator follows a desired trajectory.

Keywords

Active Joint Linear Matrix Inequality Control Phase Adaptive Controller Control Joint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arai H, Tanie K, Tachi S (1991) Dynamic control of a manipulator with passive joints in operational space. IEEE Trans Rob Autom 9(1):85–93CrossRefGoogle Scholar
  2. 2.
    Bergerman M (1996) Dynamics and control of underactuated manipulators. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, p 129Google Scholar
  3. 3.
    Visinsky ML, Cavallaro JR, Walker ID (1994) Robotic fault detection and fault tolerance: a survey. Reliab Eng Syst Saf 46(2):139–158CrossRefGoogle Scholar
  4. 4.
    Visinsky ML, Cavallaro JR, Walker ID (1995) A dynamic fault tolerance framework for remote robots. IEEE Trans Rob Autom 11(4):477–490CrossRefGoogle Scholar
  5. 5.
    Siqueira AAG, Terra MH (2004) Nonlinear and Markovian \({\mathcal{H}}_{\infty}\) controls of underactuated manipulators. IEEE Trans Control Syst Technol 12(6):811–826CrossRefGoogle Scholar
  6. 6.
    Terra MH, Tinós R (2001) Fault detection and isolation in robotic manipulators via neural networks: a comparison among three architectures for residual analysis. J Rob Syst 18(7):357–374MATHCrossRefGoogle Scholar
  7. 7.
    Dixon WE, Walker ID, Dawson DM, Hartranft JP (2000) Fault detection for robot manipulators with parametric uncertainty: a prediction-error-based approach. IEEE Trans Rob Autom 16(6):689–699CrossRefGoogle Scholar
  8. 8.
    Routh EJ (1960) Dynamics of a system of rigid bodies, 7th edn. Dover Publications Inc., New YorkGoogle Scholar
  9. 9.
    Wu F, Yang XH, Packard A, Becker G (1996) Induced \({\mathcal{L}}_2\)-norm control for LPV systems with bounded parameter variation rates. Int J Rob Nonlinear Control 6(9–10):983–998MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Apkarian P, Adams RJ (1998) Advanced gain-scheduling techniques for uncertain systems. IEEE Trans Control Syst Technol 6(1):21–32CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Adriano A. G. Siqueira
    • 1
  • Marco H. Terra
    • 1
  • Marcel Bergerman
    • 2
  1. 1.Engineering School of São CarlosUniversity of São PauloSão CarlosBrazil
  2. 2.CMU Robotics InstitutePittsburghUSA

Personalised recommendations