Linear \({\mathcal H}_{\user2 \infty}\) Control

  • Adriano A. G. Siqueira
  • Marco H. Terra
  • Marcel Bergerman


This chapter deals with linear robust control of robot manipulators. The approach we consider is based on the combination of two controllers, computed torque and linear \({\mathcal{H}}_\infty.\) Experimental results using the UARM manipulator and CERob environment are presented to illustrate the validity of the method.


External Disturbance Robotic Manipulator Robust Controller Linear Controller Applied Torque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Balas GJ, Doyle JC, Glover K, Packard A, Smith R (2001) \(\mu\)-Analysis and synthesis toolbox. The MathWorks, Inc., NatickGoogle Scholar
  2. 2.
    Beaven RW, Wright MT, Seaward DR (1996) Weighting function selection in the \({\mathcal{H}}_\infty\) design process. Control Eng Pract 4(5):625–633CrossRefGoogle Scholar
  3. 3.
    Berghuis H, Roebbers H, Nijmeijer H (1995) Experimental comparison of parameter estimation methods in adaptive robot control. Automatica 31(9):1275–1285MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bernstein DS, Haddad WM (1989) LQG control with an \({\mathcal{H}}_\infty\) performance bound: a Riccati equation approach. IEEE Trans Autom Control 34(3):293–305MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chiang RY, Safonov MG (1992) Robust control toolbox. The MathWorks, Inc., NatickGoogle Scholar
  6. 6.
    Craig JJ (1986) Introduction to robotics: mechanics and control. Addison-Wesley, Reading, MAGoogle Scholar
  7. 7.
    Doyle JC, Glover K, Khargonekar PP, Francis BA (1989) State space solutions to standard \({\mathcal{H}}_2\) and \({\mathcal{H}}_\infty\) problems. IEEE Trans Autom Control 34(3):831-847MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Gilbert EG, Ha IJ (1984) An approach to nonlinear feedback control with applications to robotics. IEEE Trans Syst Man Cybern 14(6):879–884MATHGoogle Scholar
  9. 9.
    Hunt LR, Sun R, Meyer G (1983) Global transformations of nonlinear systems. IEEE Trans Autom Control 28(1):24–31MATHCrossRefGoogle Scholar
  10. 10.
    Jaritz A, Spong MW (1996) An experimental comparison of robust control algorithms on a direct drive manipulator. IEEE Trans Control Syst Technol 4(6):627–640CrossRefGoogle Scholar
  11. 11.
    Kang BS, Kim SH, Kwak YK, Smith CC (1999) Robust tracking control of a direct drive robot. J Dyn Syst Meas Control 121(2):261–269CrossRefGoogle Scholar
  12. 12.
    Lewis FL, Abdallah CT, Dawson DM (2004) Robot manipulator control: theory and practice. Marcel Dekker, Inc., New YorkGoogle Scholar
  13. 13.
    Reyes F, Kelly R (2001) Experimental evaluation of model-based controllers on a direct-drive robot arm. Mechatronics 11(3):267–282CrossRefGoogle Scholar
  14. 14.
    Safonov MG, Limebeer DJN, Chiang RY (1989) Simplifying the \({\mathcal{H}}_\infty\) theory via loop shifting, matrix pencil and descriptor concepts. Int J Control 50(6):2467–2488MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Whitcomb LL, Rizzi AA, Kodistschek DE (1993) Comparative experiments with a new adaptive controller for robot arms. IEEE Trans Rob Autom 9(1):59–70CrossRefGoogle Scholar
  16. 16.
    Zhou K, Doyle JC, Glover K (1995) Robust and optimal control. Prentice Hall, Upper Saddle RiverGoogle Scholar
  17. 17.
    Zhou K, Doyle JC (1998) Essentials of robust control. Prentice Hall, New YorkGoogle Scholar
  18. 18.
    Zhou K, Glover K, Bodenheimer B, Doyle JC (1994) Mixed \({\mathcal{H}}_2\) and \({\mathcal{H}}_\infty\) performance objectives I: robust performance analysis. IEEE Trans Autom Control 39(8):1564–1574MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Zhou K, Glover K, Bodenheimer B, Doyle JC (1994) Mixed \({\mathcal{H}}_2\) and \({\mathcal{H}}_\infty\) performance objectives II: optimal control. IEEE Trans Autom Control 39(8):1575–1586MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Adriano A. G. Siqueira
    • 1
  • Marco H. Terra
    • 1
  • Marcel Bergerman
    • 2
  1. 1.Engineering School of São CarlosUniversity of São PauloSão CarlosBrazil
  2. 2.CMU Robotics InstitutePittsburghUSA

Personalised recommendations