Cement Composites Reinforced with Vegetable Fibres

  • Fernando Pacheco Torgal
  • Said Jalali


Replacement of asbestos fibers by vegetable fibers is a major step to achieve a more sustainable construction. This chapter covers cement composite materials containing short vegetable fibers and also the replacement of steel reinforcement for bamboo rods. It includes fiber characteristics, properties and the description of the treatments that improve their performance; it covers the compatibility between the fibers and the cement matrix and also how the fibers influence cement properties. It also includes the properties and durability performance of cementitious materials reinforced with vegetable fibers.


Natural Fibre Calcium Hydroxide Concrete Beam Cement Matrix Interfacial Transition Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdelmouleh M, Boufi S, Belgacem M, Duarte A, Salah A, Gandini A (2004) Modification of cellulosic fibres with funcionalised silanes: development of surface properties. Inter J Adhes Adhes 24:43–54CrossRefGoogle Scholar
  2. Agopyan V, Savastano H, John V, Cincotto M (2005) Developments on vegetable fibre-cement based materials in São Paulo, Brazil: an overview. Cem Concr Compos 27:527–536. doi: 10.1016/j.cemconcomp.2004.09.004 CrossRefGoogle Scholar
  3. Al-Oraimi S, Seibi A (1995) Mechanical characterization and impact behavior of concrete reinforced with natural fibres. Compos Struct 32:165–171. doi: 10.1016/0263-8223(95)00043-7 CrossRefGoogle Scholar
  4. Arsene M, Okwo A, Bilba K, Soboyejo A, Soboyejo W (2007) Chemically and thermally treated vegetable fibers for reinforcement of cement-based composites. Mater Manufact Process 22:214–227. doi: 10.1080/10426910601063386 CrossRefGoogle Scholar
  5. Arsène M-A, Savastano H Jr, Allameh S, Ghavami K, Soboyejo W (2003) Cementitious composites reinforced with vegetable fibers. In: Proceedings of the First Interamerican conference on non-conventional materials and technologies in the Eco-construction and Infrastructure, IAC- NOCMAT 2003, Joao-Pessoa, BrazilGoogle Scholar
  6. Azuma K, Uchiyama I, Chiba Y, Okumura J (2009) Mesothelioma risk and environmental exposure to asbestos: Past and future trends in Japan. Int J Occup Environ Health 15:166–172Google Scholar
  7. Bentur A, Mitchell D (2008) Material performance lessons. Cem Concr Res 38:259–272. doi: 10.1016/j.cemconres.2007.09.009 CrossRefGoogle Scholar
  8. Bilba K, Arsene M (2008) Silane treatment of bagasse fiber for reinforcement of cementitious composites. Compos A 39:1488–1495. doi: 10.1016/j.compositesa.2008.05.013 CrossRefGoogle Scholar
  9. Bilba K, Arsene M, Ouensanga A (2003) Sugar cane bagasse fibre reinforced cement composites. Part I. Influence of the botanical components of bagasse on the setting of bagasse/cement composite. Cem Concr Compos 25:91–96. doi: 10.1016/S0958-9465(02)00003-3 CrossRefGoogle Scholar
  10. Brandt A (2008) Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos Struct 86:3–9. doi: 10.1016/j.compstruct.2008.03.006 CrossRefGoogle Scholar
  11. Burger J (2009) Management effects on growth, production and sustainability of managed forest ecosystems: past trends and future directions. For Ecol Manag 17:1335–2346. doi: 10.1016/j.foreco.2009.03.015 Google Scholar
  12. Castellano M, Gandini A, Fabbri P, Belgacem M (2004) Modification of cellulose fibres with organosilanes: under what conditions does coupling occur? J Coll Interface Sci 273:505–511. doi: 10.1016/j.jcis.2003.09.044 CrossRefGoogle Scholar
  13. Coutts R (2005) A review of Australian research into natural fibre cement composites. Cem Concr Compos 27:518–526. doi: 10.1016/j.cemconcomp.2004.09.003 CrossRefGoogle Scholar
  14. D’Almeida A, Filho J, Filho R (2009) Use of curaua fibers as reinforcement in cement composites. Chem Engin Trans 17:1717–1722.’Almeida.pdf Google Scholar
  15. Ferreira G (2007) Vigas de concreto armadas com taliscas de bamboo Dendrocalamus Giganteus. Ph.D. Thesis, UNICAMP, BrazilGoogle Scholar
  16. Ferreira RM (2009) Service-life Design of Concrete Structures in Marine Environments: A probabilistic based approach. VDM Verlag Dr. Muller Aktiengesellschaft & Co. KGGoogle Scholar
  17. Filho R, Scrivener K, England G, Ghavami K (2000) Durability of alkali-sensitive sisal and coconuts fibres in cement mortar composites. Cem Concr Compos 22:127–143. doi: 10.1016/S0958-9465(99)00039-6 CrossRefGoogle Scholar
  18. Filho R, Ghavami K, England G, Scrivener K (2003) Development of vegetable fibre-mortar composites of improved durability. Cem Concr Compos 25:185–196. doi: 10.1016/S0958-9465(02)00018-5 CrossRefGoogle Scholar
  19. Filho R, Ghavami K, Sanjuán M, England G (2005) Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cem Concr Compos 27:537–546. doi: 10.1016/j.cemconcomp.2004.09.005 CrossRefGoogle Scholar
  20. Filho RD, Silva FS, Fairbarn E, Filho JA (2009) Durability of compression molded sisal fiber reinforced mortar laminates. Constr Buid Mater 23:2409–2420. doi: 10.1016/j.conbuildmat.2008.10.012 CrossRefGoogle Scholar
  21. Ghavami K (1995) Ultimate load behaviour of bamboo-reinforced lightweight concrete beams. Cem Concr Compos 17:281–288. doi: 10.1016/0958-9465(95)00018-8 CrossRefGoogle Scholar
  22. Ghavami K (2005) Bamboo as reinforcement in structure concrete elements. Cem Concr Compos 27:637–649. doi: 10.1016/j.cemconcomp.2004.06.002 CrossRefGoogle Scholar
  23. Gjorv O (1994) Steel corrosion in concrete structures exposed to Norwegian marine environment. ACI Concr Int 35−39Google Scholar
  24. Glasser F, Marchand J, Samson E (2008) Durability of concrete. Degradation phenomena involving detrimental chemical reactions. Cem Concr Res 38:226–246. doi: 10.1016/j.cemconres.2007.09.015 CrossRefGoogle Scholar
  25. Gram H (1983) Durability of natural fibres in concrete. Swedish Cement and Concrete Research Institute, StockolmGoogle Scholar
  26. Gutiérrez R, Díaz L, Delvasto S (2005) Effect of pozzolans on the performance of fiber-reinforced mortars. Cem Concr Compos 27:593–598. doi: 10.1016/j.cemconcomp.2004.09.010 CrossRefGoogle Scholar
  27. Ikai S, Reicher J, Rodrigues A, Zampieri V (2010) Asbestos-free technology with new high toughness polypropylene (PP) fibers in air-cured Hatschek process. Constr Build Mater 24:171–180. doi: 10.1016/j.conbuildmat.2009.06.019 CrossRefGoogle Scholar
  28. Joaquim A, Tonoli G, Santos S, Savastano H (2009) Sisal organosolv pulp as reinforcement for cement based composites. Mater Res 12:305–314. doi: 10.1590/S1516-14392009000300010 Google Scholar
  29. John V, Cincotto M, Sjotrom C, Agopyan V, Oliveira C (2005) Durability of slag mortar reinforced with coconut fibre. Cem Concr Compos 27:565–574. doi: 10.1016/j.cemconcomp.2004.09.007 CrossRefGoogle Scholar
  30. Juárez C, Durán A, Valdez P, Fajardo G (2007) Performance of Agave lechuguilla natural fiber in Portland cement composites exposed to severe environment conditions. Build Environ 42:1151–1157. doi: 10.1016/j.buildenv.2005.12.005 CrossRefGoogle Scholar
  31. Jung Y (2006) Investigation of bamboo as reinforcement in concrete. Master of Science in Civil and Environment Engineering. University of Texas,  Google Scholar
  32. Júnior H, Mesquita L, Fabro G, Willrich F, Czarnieski C (2005) Concrete beams reinforced with bamboo Dendrocalamus giganteus. I: Experimental analysis. R Bras Eng Agr Ambient 9:642–651CrossRefGoogle Scholar
  33. Khare L (2005) Performance evaluation of bamboo reinforced concrete beams. Master of Science in Civil Engineering. University of Texas  Google Scholar
  34. Kriker A, Debicki G, Bali A, Khenfer M, Chabannet M (2005) Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot dry climates. Cem Concr Compos 27:554–648. doi: 10.1016/j.cemconcomp.2004.09.015 CrossRefGoogle Scholar
  35. Kriker A, Bali A, Debicki G, Bouziane M, Chabannet M (2008) Durability of date palm fibres and their use as reinforcement in hot dry climates. Cem Concr Compos 30:639–648. doi: 10.1016/j.cemconcomp.2007.11.006 CrossRefGoogle Scholar
  36. Kumagai S, Kurumatani N (2009) Asbestos fiber concentration in the area surrounding a former asbestos cement plant and excess mesothelioma deaths in residents. Am J Industr Med 52:790−798. Google Scholar
  37. Li Z, Wang L, Wang X (2004) Compressive and flexural properties of hemp fiber reinforced concrete. Fibers Polymers 5:187–197. doi: 10.1007/BF02902998 CrossRefGoogle Scholar
  38. Li Z, Wang X, Wang L (2006) Properties of hemp fibre reinforced concrete composites. Compos A 37:497–505. doi: 10.1016/j.compositesa.2005.01.032 CrossRefGoogle Scholar
  39. Lima H, Willrich F, Barbosa N, Rosa M, Cunha B (2008) Durability analysis of bamboo as concrete reinforcement. Mater Struct 41:981–989. doi: 10.1617/s11527-007-9299-9 CrossRefGoogle Scholar
  40. Mesquita L, Czarnieski C, Filho A, Willrich F, Júnior H, Barbosa N (2006) Adhesion strength between bamboo and concrete. R Bras Eng Agr Ambient 10:505–516CrossRefGoogle Scholar
  41. Mohr B, Biernacki J, Kurtis K (2007) Supplementary cementitious materials for mitigating degradation of kraft pulp fiber cement-composites. Cem Concr Res 37:1531–1543. doi: 10.1016/j.cemconres.2007.08.001 CrossRefGoogle Scholar
  42. Motta L, John V, Agopyan V (2009) Thermo-mechanical treatment to improve properties of sisal fibres for composites. 5th International Materials Symposium MATERIALS 2009—14th meeting of SPM, LisbonGoogle Scholar
  43. Passuello A, Moriconi G, Shah S (2009) Cracking behavior of concrete with shrinkage reducing admixtures and PVA fibers. Cem Concr Compos 31:699–704. doi: 10.1016/j.cemconcomp.2009.08.004 CrossRefGoogle Scholar
  44. Pehanich J, Blankenhorn P, Silsbee M (2004) Wood fiber surface treatment level effects on selected mechanical properties of wood fiber–cement composites. Cem Concr Res 34:59–65. doi: 10.1016/S0008-8846(03)00193-5 CrossRefGoogle Scholar
  45. Pimentel L, Beraldo A, Savastano H (2006) Durability of cellulose–cement composites modified by polymer. Engenharia Agricola 26:344–353CrossRefGoogle Scholar
  46. Powers RF (1999) On the sustainable productivity of planted forests. New Forests 17:263–306. doi: 10.1023/A:1006555219130 CrossRefGoogle Scholar
  47. Ramakrishna G, Sundararajan T (2005a) Impact strength of a few natural fibre reinforced cement mortar slabs: a comparative study. Cem Concr Compos 27:547–553. doi: 10.1016/j.cemconcomp.2004.09.006 CrossRefGoogle Scholar
  48. Ramakrishna G, Sundararajan T (2005b) Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cem Concr Compos 27:575–582. doi: 10.1016/j.cemconcomp.2004.09.008 CrossRefGoogle Scholar
  49. Rametsteiner E, Simula M (2003) Forest certification—an instrument to promote sustainable forest management? J Environ Manag 67:87–98. doi: 10.1016/S0301-4797(02)00191-3 CrossRefGoogle Scholar
  50. Razak A, Ferdiansyah T (2005) Toughness characteristics of Arenga pinnata fibre concrete. J Nat Fib 2:89–103. doi: 10.1300/J395v02n02_06 CrossRefGoogle Scholar
  51. Reis J (2006) Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Constr Build Mater 20:673–678. doi: 10.1016/j.conbuildmat.2005.02.008 CrossRefGoogle Scholar
  52. Roma L, Martello L, Savastano H (2008) Evaluation of mechanical, physical and thermal performance of cement-based tiles reinforced with vegetable fibers. Constr Build Mater 22:668–674. doi: 10.1016/j.conbuildmat.2006.10.001 CrossRefGoogle Scholar
  53. Sample V (2006) Sustainable forestry and biodiversity conservation toward a new consensus. J Sustainable Forestry 21:137–150CrossRefGoogle Scholar
  54. Savastano H, Agopyan V (1999) Transition zone studies of vegetable fibre−cement paste composites. Cem Concr Compos 21:49–57. doi: 10.1016/S0958-9465(98)00038-9 CrossRefGoogle Scholar
  55. Savastano H, Warden P, Coutts R (2000) Brazilian waste fibres as reinforcement for cement-based composites. Cem Concr Compos 22:379–384. doi: 10.1016/S0958-9465(00)00034-2 CrossRefGoogle Scholar
  56. Savastano H, Warden P, Coutts R (2001a) Performance of low-cost vegetable fibre−cement composites under weathering. CIB World Building Congress, WellingtonGoogle Scholar
  57. Savastano H, Warden P, Coutts R (2001b) Ground iron blast furnace slag as a matrix for cellulose−cement materials. Cem Concr Compos 23:389–397. doi: 10.1016/S0958-9465(00)00083-4 CrossRefGoogle Scholar
  58. Savastano H, Warden P, Coutts R (2003) Mechanically pulped sisal as reinforcement in cementitious matrices. Cem Concr Compos 25:311–319. doi: 10.1016/S0958-9465(02)00055-0 CrossRefGoogle Scholar
  59. Savastano H, Warden P, Coutts R (2005a) Microstruture and mechanical properties of waste fibre−cement composites. Constr Build Mater 27:583–592. doi: 10.1016/j.cemconcomp.2004.09.009 Google Scholar
  60. Savastano H, Warden P, Coutts R (2005b) Potential of alternative fibre cements as building materials for developing areas. Cem Concr Compos 25:585–592. doi: 10.1016/S0958-9465(02)00071-9 CrossRefGoogle Scholar
  61. Savastano H, Santos S, Radonjic M, Soboyejo W (2009) Fracture and fatigue of natural fiber-reinforced cementitious composites. Cem Concr Compos 31:232–243. doi: 10.1016/j.cemconcomp.2009.02.006 CrossRefGoogle Scholar
  62. Sedan D, Pagnoux C, Smith A, Chotard T (2008) Mechanical properties of hemp fibre reinforced cement: influence of the fibre−matriz interaction. J Eur Ceram 28:183–192. doi: 10.1016/j.jeurceramsoc.2007.05.019 CrossRefGoogle Scholar
  63. Silva J, Rodrigues D (2007) Compressive strength of low resistance concrete manufactured with sisal fiber. 51º Brazilian Congress of Ceramics. Salvador, BrazilGoogle Scholar
  64. Silva F, Filho R, Filho J, Fairbairn E (2010) Physical and mechanical properties of durable sisal fiber−cement composites. Constr Build Mater 24:777–785. doi: 10.1016/j.conbuildmat.2009.10.030 CrossRefGoogle Scholar
  65. Stancato A, Burke A, Beraldo A (2005) Mechanism of a vegetable waste composite with polymer-modified cement (VWCPMC). Cem Concr Compos 27:599–603. doi: 10.1016/j.cemconcomp.2004.09.011 CrossRefGoogle Scholar
  66. Swamy R (1990) Vegetable fibre reinforced cement composites—a false dream or a potential reality? In Proc of the 2nd International Symposium on Vegetable Plants and their Fibres as Building Materials 3–8. Rilem Proceedings 7. Chapman and HallGoogle Scholar
  67. Swanson FJ, Franklin JF (1992) New forestry principles from ecosystem analysis of Pacific Northwest forests. Ecol Applic 262−274.
  68. Tonoli G, Joaquim A, Arsene M, Bilba K, Savastano H (2007) Performance and durability of cement based composites reinforced with refined sisal pulp. Mater Manufactur Process 22:149–156. doi: 10.1080/10426910601062065 CrossRefGoogle Scholar
  69. Tonoli G, Filho U, Savastano H, Bras J, Belgacem M, Lahr F (2009) Cellulose modified fibres in cement-based composites. Compos A 2046−2053. personales.···/03···/tonoli%20composites%20part%20a.pdf
  70. Tonoli G, Savastano H, Fuente E, Negro C, Blanco A, Lahr F (2010a) Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Ind Crops Prod 31:225–232. doi: 10.1016/j.indcrop.2009.10.009 CrossRefGoogle Scholar
  71. Tonoli G, Santos S, Joaquim A, Savastano H (2010b) Effect of accelerated carbonation on cementitious roofing tiles reinforced with lignocellulosic fibre. Constr Build Mater 24:193–201. doi: 10.1016/j.indcrop.2009.10.009 CrossRefGoogle Scholar
  72. UNEP (2007) The last stand of the orangutan. State of emergency: Illegal logging, fire and palm oil in Indonesia`s national Parks. In: Nellemann C, Miles L, Kaltenbom B, Virtue M, Ahlenius H (eds) United Nations Environment Programme, New YorkGoogle Scholar

Copyright information

© Springer-Verlag London Limited  2011

Authors and Affiliations

  1. 1.C-TAC Research UnitUniversity of MinhoGuimarãesPortugal
  2. 2.Department of Civil EngineeringUniversity of MinhoGuimarãesPortugal

Personalised recommendations