Masonry Units

  • Fernando Pacheco Torgal
  • Said Jalali


This chapter covers the latest findings about masonry units. The environmental impacts of the fired-clay brick industry are reviewed. This chapter addresses the case of fired clay bricks and of concrete blocks containing industrial wastes. The advantages of unfired-clay bricks are discussed. Masonry units with optimized shape for enhanced thermal and acoustical performance are also analyzed.


Compressive Strength Rice Husk Masonry Wall Concrete Block High Compressive Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ajam L, Ouezdou M, Felfoul H, Mensi R (2009) Characterization of Tunisian phosphogypsum and its valorization in clay bricks. Constr Build Mater 23:3240–3247. doi: 10.1016/j.conbuildmat.2009.05.009 CrossRefGoogle Scholar
  2. Algin H, Turgut P (2008) Cotton and limestone powder wastes as brick material. Constr Build Mater 22: 1074–1080. Scholar
  3. Chiang K, Chou P, Hua C, Chien K, Cheeseman C (2009) Lightweight bricks manufactured from water treatment sludge and rice husks. J Hazard Mater 171:76–82. doi: 10.1016/j.jhazmat.2009.05.144 CrossRefGoogle Scholar
  4. Chindaprasirt P, Pimraksa K (2008) A study of fly ash-lime granule unfired brick. Powder Technol 182:33–41. doi: 10.1016/j.powtec.2007.05.001 CrossRefGoogle Scholar
  5. Cruz J (2000) Ceramic blocks with pore formers for enhanced thermal performance. Master Thesis, LNEC-IST, LisbonGoogle Scholar
  6. Cultrone G, Sebastián E (2009) Fly ash addition in clayey materials to improve the quality of solid bricks. Constr Build Mater 23: 1178–1184.…/Constr%20Build%20Mat%202009.pdf
  7. De La Casa J, Lorite M, Jiménez J, Castro E (2009) Valorization of waste water from two-phase olive oil extraction in fired clay brick production. J Hazard Mater 169:271–278. doi: 10.1016/j.jhazmat.2009.03.095 CrossRefGoogle Scholar
  8. Del Coz Diaz J, Nieto P, Sierra J, Sanchez I (2008) Non-linear thermal optimization and design improvement of a new internal light concrete multi-holed brick walls by FEM. Appl Therm Eng 28:1090–1100. doi: 10.1016/j.applthermaleng.2007.06.023 CrossRefGoogle Scholar
  9. Del Coz Diaz J, Nieto P, Rabanal F, Martínez-Luengas A (2011) Design and shape optimization of a new type of hollow concrete masonry block using the finite element method. Eng Struct 33:1–9. doi: 10.1016/j.engstruct.2010.09.012 CrossRefGoogle Scholar
  10. Demir I (2006) An investigation on the production of construction brick with processed waste tea. Build Environ 41:1274–1278. doi: 10.1016/j.buildenv.2005.05.004 CrossRefGoogle Scholar
  11. Demir I (2008) Effect of organic residues addition on the technological properties of clay bricks. Waste Manag 28:622–627. doi: 10.1016/j.wasman.2007.03.019 CrossRefGoogle Scholar
  12. Demir I, Baspinar M, Orhan M (2005) Utilization of kraft pulp production residues in clay brick production. Build Environ 40:1533–1537. doi: 10.1016/j.buildenv.2004.11.021 Google Scholar
  13. Dias A, Sousa H, Lourenço P, Ferraz E, Sousa L, Sousa R, Vasconcelos G, Medeiros P (2008) Development of a sustainable fired-caly brick for sustainable construction. Congress on inovation for sustainable construction CINCOS′08. Centro Habitat, Cúria, Portugal, pp 165–172Google Scholar
  14. Dondi M, Guarini G, Raimondo M, Zanelli C (2009) Recycling PC and TV waste glass in clay bricks and roof tiles. Waste Manag 29:1945–1951. doi: 10.1016/j.wasman.2008.12.003 CrossRefGoogle Scholar
  15. Ducman V, Kopar T (2007) The influence of different waste additions to clay-product mixtures. Mater Technol 41:289–293Google Scholar
  16. El-Mahllawy M (2008) Characteristics of acid resisting bricks made from quarry residues and waste steel slag. Constr Build Mater 22:1887–1896. doi: 10.1016/j.conbuildmat.2007.04.007 CrossRefGoogle Scholar
  17. Hermans J, Peelen J, Bei J (2001) Recycling of the TV glass: profit or doom? Am Ceram Soc Bull 80:51–56Google Scholar
  18. Kohler R (2002) Use of leather residues as pore-forming agents for masonry bricks. Ziegelind Inter 58:30–38. doi: 10.1016/j.ceramint.2009.02.027 Google Scholar
  19. Kumar S (2000) Fly-ash-lime phosphogypsum cementitious binder: anew trend in bricks. Mater Struct 33:59–64CrossRefGoogle Scholar
  20. Kumar S (2002) A perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development. Constr Build Mater 16:519–525. doi: 10.1016/S0950-0618(02)00034-X CrossRefGoogle Scholar
  21. Lin K (2007) The effect of heating temperature of thin film transistor-liquid crystal display (TFT-LCD) optical waste glass as a partial substitute partial for clay in eco-brick. J Clean Prod 15:1755–1759. doi: 10.1016/j.jclepro.2006.04.002 CrossRefGoogle Scholar
  22. Lingling X, Wei G, Tao W, Nanru Y (2005) Study on fired bricks with replacing clay by fly ash in high volume ratio. Constr Build Mater 19:243–247. doi: 10.1016/j.conbuildmat.2004.05.017 CrossRefGoogle Scholar
  23. Loryuenyong V, Panyachai T, Kaewsimork K, Siritai C (2009) Effects of recycled glass substitution on the physical and mechanical properties of clay bricks. Waste Manag 29:2717–2721. doi: 10.1016/j.wasman.2009.05.015 CrossRefGoogle Scholar
  24. Lynch G (1994) Brickwork: history, technology and practice. Donhead, LondonGoogle Scholar
  25. Mekki H, Anderson M, Benzina M, Ammar E (2008) Valorization of olive mill wastewater by its incorporation in building bricks. J Hazard Mater 158:308–315. doi: 10.1016/j.jhazmat.2008.01.104 CrossRefGoogle Scholar
  26. Monteiro S, Vieira C (2005) Effect of oily waste addition to clay ceramic. Ceram Inter 31:353–358. doi: 10.1016/j.ceramint.2004.05.002 CrossRefGoogle Scholar
  27. Monteiro S, Vieira C, Ribeiro M, Silva F (2007) Red ceramic industrial products incorporated with oily wastes. Constr Build Mater 21:2007–2011. doi: 10.1016/j.conbuildmat.2006.05.035 CrossRefGoogle Scholar
  28. Morton T (2006) Feat of clay.
  29. Oti J, Kinuthia J, Bai J (2010) Design thermal values for unfired clay bricks. Mater Des 31:104–112. doi: 10.1016/j.matdes.2009.07.011 CrossRefGoogle Scholar
  30. Pimraksa K, Chindaprasirt P (2009) Lightweight bricks made of diatomaceous earth, lime and gypsum. Ceram Inter 35:471–478. doi: 10.1016/j.ceramint.2008.01.013 CrossRefGoogle Scholar
  31. Pinheiro B, Holanda J (2009) Processing of red ceramics incorporated with encapsulated petroleum waste. J Mater Process Technol 209:5606–5610. doi: 10.1016/j.jmatprotec.2009.05.018 CrossRefGoogle Scholar
  32. Reddy B, Jagadish K (2003) Embodied energy of common and alternative building materials and technologies. Energy Build 35:129–137.…/Green%20Building%20Training%20Programme/Emb%20energy%20materials2.pdfGoogle Scholar
  33. Saboya F, Xavier G, Alexandre J (2007) The use of the powder marble by-product to enhance the properties of brick ceramic. Constr Build Mater 21:1950–1960. doi: 10.1016/j.conbuildmat.2006.05.029 CrossRefGoogle Scholar
  34. Samara M, Lafhaj Z, Chapiseau C (2009) Valorization of stabilized river sediments in fired clay bricks: factory scale experiment. J Hazard Mater 163:701–710. doi: 10.1016/j.jhazmat.2008.07.153 CrossRefGoogle Scholar
  35. Sousa L, Castro C, Carlos A, Sousa H (2011) Topology optimisation of masonry units from the thermal point of view using a genetic algorithm. Constr Build Mater 25:2254–2262. doi: 10.1016/j.conbuildmat.2010.11.010 CrossRefGoogle Scholar
  36. Sutcu M, Akkurt S (2009) The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceram Inter 35:2625–2631. doi: 10.1016/j.ceramint.2009.02.027 CrossRefGoogle Scholar
  37. Turgut P (2008) Limestone dust and glass powder wastes as new brick material. Mater Struct 41:805–813. doi: 10.1617/s11527-007-9284-3 CrossRefGoogle Scholar
  38. Turgut P, Algin H (2007) Limestone dust and wood sawdust as brick material. Constr Build Mater 42:3399–3403. doi: 10.1016/j.buildenv.2006.08.012 Google Scholar

Copyright information

© Springer-Verlag London Limited  2011

Authors and Affiliations

  1. 1.C-TAC Research UnitUniversity of MinhoGuimarãesPortugal
  2. 2.Department of Civil EngineeringUniversity of MinhoGuimarãesPortugal

Personalised recommendations