Binders and Concretes

  • Fernando Pacheco Torgal
  • Said Jalali


Concrete is the most used construction material on Earth, almost 10,000 million tons/year. In this chapter the environmental impacts of Portland cement concrete are described. The importance of pozzolans as Portland cement replacement additions and its role in increasing concrete durability is discussed. This chapter covers the use of non reactive wastes as aggregate replacement. It also covers the importance of organic polymers in concrete durability. It addresses the case of self-sensing concretes as a way to assess its own damage avoiding structure failure. Finally, eco-friendly environmental binders alternative to Portland cement such as sulfo-aluminate cement, magnesium phosphate cement and alkali-activated binders are discussed.


Compressive Strength Portland Cement Ordinary Portland Cement Blast Furnace Slag Recycle Aggregate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adolf Z, Bazan J (2007) Utilisation of metallurgical slags as raw material basis for preparation of alkali activated materials. In: Proceedings of the 2007–Alkali Activated Materials–Research, Production and Utilization 3rd Conference. Agentura Action, Prague, Czech Republic 11–19Google Scholar
  2. Agarwal SK (2006) Pozzolanic activity of various siliceous materials. Cem Concr Res 36:1735–739. doi: 10.1016/j.cemconres.2004.06.025 Google Scholar
  3. Akram T, Memon S, Obaid H (2009) Production of low cost self compacting concrete using bagasse ash. Constr Build Mater 23:703–712. doi: 10.1016/j.conbuildmat.2008.02.012
  4. Albano C, Camacho N, Reyes J, Feliu J, Hernández M (2005) Influence of scrap rubber addition to Portland concrete composites: destructive and non-destructive testing. Compos Struct 71:439–446. doi: 10.1016/j.compstruct.2005.09.037 Google Scholar
  5. Allahverdi A, Skvara F (2007) Evaluating the potential application of fly ash/blast furnace slag geopolymer material for inhibiting acid corrosion, a comparative study. Alkali activated materials-research, production and utilization 3rd conference, Prague, Czech Republic, pp 21–37Google Scholar
  6. Allahverdi A, Škvára F (2001a) Nitric acid attack on hardened paste of geopolymeric cements-Part 1. Ceram-Silikaty 45:81–88. Google Scholar
  7. Allahverdi A, Škvára F (2001b) Nitric acid attack on hardened paste of geopolymeric cements-Part 2. Ceram-Silikaty 45:143–149. Google Scholar
  8. Allahverdi A, Škvára F (2005) sulfuric acid attack on hardened paste of geopolymer cements—Part 1. Mechanism of corrosion at relatively high concentrations. Ceram-Silikaty 49:225–229.
  9. Alonso S, Palomo A (2001a) Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures. Cem Concr Res 31:25–30. doi: 10.1016/S0008-8846(00)00435-X Google Scholar
  10. Alonso S, Palomo A (2001b) Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Mater Lett 47:55–62. doi: 10.1016/S0167-577X(00)00212-3 Google Scholar
  11. Al-Rawas A, Hago A (2006) Evaluation of field and laboratory produced burnt clay pozzolans. Appl Clay Sci 31:29–35. doi: 10.1016/j.clay.2005.07.009 Google Scholar
  12. Al-Rawas A, Hago AW, Corcoran TC (1998) Properties of Omani artificial pozzolana. Appl Clay Sci 13:275–292. doi: 10.1016/S0169-1317(98)00029-5 Google Scholar
  13. Ambroise J, Murat M, Pera J (1985) Hydration reaction and hardening of calcined clays and related minerals. Extension of the research and general conclusions. Cem Concr Res 15:261–268Google Scholar
  14. Ambroise J, Murat M, Pera J (1986) Investigation of synthetic binders obtained by middle temperature thermal dislocations of clay minerals. Silicate Indust 7:99–107Google Scholar
  15. Andersson R, Gram H (1988) Properties of alkali-activated slag. In: Alkali-activated slag, Swedish cement and Concrete Research Institute, pp 9–63, CBI Research, StockolmGoogle Scholar
  16. Anwar M, Miyagawa T, Gaweesh M (2000) Using rice husk ash as a cement replacement material in concrete. Waste Manag 1:671-684. doi: 10.1016/S0713-2743(00)80077-X
  17. ASTM C-125 (2007) Standard terminology relating to concrete and concrete aggregates. ASTM International, West Conshohocken, PennsylvaniaGoogle Scholar
  18. Bakharev T (2005) Geopolymeric materials prepared using class F fly ash and elevated temperature curing. Cem Concr Res 35:1224–1232. doi: 10.1016/j.cemconres.2004.06.031
  19. Bakharev T, Sanjayan J, Cheny Y (1999) Alkali-activation of Australian slag cements. Cem Concr Res 29:113–120. doi: 10.1016/S0008-8846(98)00170-7
  20. Bakharev T, Sanjayan JG, Cheng YB (2003) Resistance of alkali-activated slag concrete to acid attack. Cem Concr Res 33:1607–1611. doi: 10.1016/S0008-8846(03)00125-X Google Scholar
  21. Balaha M, Badawy A, Hashish M (2007) Effect of using ground waste tire rubber as fine aggregate on the behaviour of concrete mixes. Indian J Eng Mater Sci 14:427–435Google Scholar
  22. Banthia N, Sheng J (1996) Fracture toughness of micro-fiber reinforced cement composites. Cem Concr Compos 18:215–269. doi: 10.1016/0958-9465(95)00030-5
  23. Bankowski P, Zou L, Hodges R (2004) Using inorganic polymer to reduce leach rates of metals from brown coal fly ash. Miner Eng 17:159–166. doi: 10.1016/j.mineng.2003.10.024 Google Scholar
  24. Barbhuiya S, Gbagbo J, Russell M, Basheer P (2009) Properties of fly ash concrete modified with hydrated lime and silica fume. Cem Concr Res 23:3233–3239. doi: 10.1016/j.conbuildmat.2009.06.001 Google Scholar
  25. Barbosa V, MacKenzie KJ, Thaumaturgo C (2000) Synthesis and characterisation of materials based on inorganic polymers of alumina and sílica: sodium polysialate polymers. Inter J Inor Polym 2:309–317. doi: 10.1016/S1466-6049(00)00041-6 Google Scholar
  26. Bargaheiser K, Nordmeyer D (2008) Greening of mortars with pozzolans. ASTM Special Tech Publ 1496:147–155Google Scholar
  27. Batayneh M, Marie I, Asi I (2007) Use of selected waste materials in concrete mixes. Waste Manag 27:1870–1876. doi: 10.1016/j.wasman.2006.07.026 Google Scholar
  28. Bentur A (2002) Cementitious materials-Nine millennia and a new century: Past, present, and future. J Mater Civil Eng 14:2–22. doi: 10.1061/(ASCE)0899-1561 Google Scholar
  29. Berndt M (2009) Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Constr Build Mater 23:2606–2613. doi: 10.1016/j.conbuildmat.2009.02.011 Google Scholar
  30. Bleischwitz R, Bahn-Walkowiak B (2007) Aggregates and construction markets in Europe: towards a sectoral action plan on sustainable resource management. Miner Energ 22:159–176Google Scholar
  31. Bogue RH (1955) The chemistry of Portland cement. Reinhold Publication Corp, New YorkGoogle Scholar
  32. Bortnovsky O, Dvorakova K, Roubicek P, Bousek J, Prudkova Z, Baxa P (2007) Development, properties and production of geopolymers based on secondary raw materials. Alkali activated materials-research, production and utilization 3rd conference, pp 83–96, Prague, Czech RepublicGoogle Scholar
  33. Bouzoubaa N, Zhang M, Bilodeau A, Malhotra V (1997) The effect of grinding on the physical properties of fly ashes and a Portland cement clinker. Cem Concr Res 27:1861–1874. doi: 10.1016/j.powtec.2009.08.020
  34. Branco F, Reis M, Tadeu A (2006) Using cork as aggregates for concrete. Meeting on quality and inovation in the construction industry. LNEC, LisbonGoogle Scholar
  35. BRGM (2001) Management of mining, quarrying and ore-processing waste in the European Union. European Commission, DG environment, 50319-FR Accessed 3 July 2011
  36. Brough AR, Atkinson A (2002) Sodium silicate-based alkali-activated slag mortars—Part I. Strength, hydration and microstructure. Cem Concr Research 32:865–879. doi: 10.1016/S0008-8846(02)00717-2
  37. Buj I, Torras J, Casellas D, Rovira M, de Pablo J (2009) Effect of heavy metals and water content on the strength of magnesium phosphate cements. J Hazard Mater 170:345–350. doi: 10.1016/j.jhazmat.2009.04.091 Google Scholar
  38. Bukowska M, Pacewska B, Wilińska I (2003) Corrosion resistance of cement mortars containing spent catalyst of fluidized bed cracking (FBCC) as an additive. J Therm Anal Calorim 74:931–942. doi: 10.1023/B:JTAN.0000011025.26715.f5 Google Scholar
  39. Cairns R, Kew H, Kenny M (2004) The use of recycled rubber tyres in concrete construction. Final report, The Onyx Environmental Trust, University of Strathclyde, GlasgowGoogle Scholar
  40. Cao J, Chung D (2002) Damage evolution during freeze–thaw cycling of cement mortar studied by electric resistivity measurement. Cem Concr Res 32:1657–1661. doi: 10.1016/S0008-8846(02)00856-6 Google Scholar
  41. Castellanos N, Agredo J (2010) Using spent fluid catalytic cracking (FCC) catalyst as pozzolanic addition—A review. Ingen Inv 30:35–42Google Scholar
  42. Chen B, Wu K, Yao W (2004) Conductivity of carbon fiber reinforced cement-based composites. Cem Concr Compos 26:291–297. doi: 10.1016/S0958-9465(02)00138-5
  43. Chen C, Habert G, Bouzidi Y, Julien A (2010) Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J Cleaner Prod 18:478–485. doi: 10.1016/j.jclepro.2009.12.014
  44. Cheng TW, Chiu JP (2003) Fire resistant geopolymer produced by granulated blast furnace slag. Miner Eng 16:205–210. doi: 10.1016/S0892-6875(03)00008-6 Google Scholar
  45. Chmielewska B (2007) Adhesion strength and other mechanical properties of SBR modified concrete. Twelth international congress on polymers in concrete, pp 157–166, Chuncheon, KoreaGoogle Scholar
  46. Choi Y, Moon D, Chung J, Cho S (2005) Effects of waste PET bottles aggregate on the properties of concrete. Cem Concr Res 35:776–781. doi: 10.1016/j.cemconres.2004.05.014 Google Scholar
  47. Choi Y, Kim Y, Choi O, Lee K, Lachemi M (2009) Utilization of tailings from tungsten mine waste as a substitution material for cement. Constr Build Mater 23:2481–2486. doi: 10.1016/j.conbuildmat.2009.02.006 Google Scholar
  48. Chou L, Lin C, Lu C, Lee C, Lee M (2010) Improving rubber concrete by waste organic sulfur compounds. Waste Manag Res 28:29–35. doi: 10.1177/0734242X09103843 Google Scholar
  49. Chung D (2000) Cement reinforced with short carbon fibers: a multifunctional material. Compos B Eng 31:511–526. doi: 10.1016/S1359-8368(99)00071-2
  50. Chung D (2001) Electromagnetic shielding effectiveness of carbon materials. Carbon 39:279–285. doi: 10.4028/ Google Scholar
  51. Chung D (2002) Electric conduction behavior of cement–matrix composites. J Mater Eng Perform 11:194–204. doi: 10.1361/105994902770344268 Google Scholar
  52. Coatanlem P, Jauberthie R, Rendell F (2006) Lightweight wood chipping concrete durability. Constr Build Mater 20:776–781. doi: 10.1016/j.conbuildmat.2005.01.057 Google Scholar
  53. Commission European (1999) Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Off J Eur Communities L182:1–19Google Scholar
  54. Commission European (2000) Directive 2000/76/EC of the European Parliament and of the council of 4 December 2000 on incineration of waste. Off J Eur Communities L332:91–111Google Scholar
  55. Corinaldesi V, Moriconi G (2009) Influence of mineral additions on the performance of 100% recycled aggregate concrete. Constr Build Mater 23:2869–2876. doi: 10.1016/j.conbuildmat.2009.02.004 Google Scholar
  56. Coutinho A (1988) Production and properties of concrete. National laboratory of Civil Engineering, LisbonGoogle Scholar
  57. Criado M, Palomo A, Fernandez-Jimenez A (2005) Alkali-activation of fly ashes. Part 1: effect of curing conditions on the carbonation of the reaction products. Fuel 84:2048–2054. doi: 10.1016/j.fuel.2005.03.030
  58. Cuberos A, De la Torre A, Martín-Sedeño M, Moreno-Real L, Merlini M, Ordónez L, Aranda M (2009) Phase development in conventional and active belite cement pastes by Rietveld analysis and chemical constraints. Cem Concr Res 39:833–842. doi: 10.1016/j.cemconres.2009.06.017
  59. Dalinaidu A, Das B, Singh D (2007) Methodology for rapid determination of pozzolanic activity of materials. J ASTM Int 4. doi: 10.1520/JAI100343
  60. Damtoft J, Lukasik J, Herfort D, Sorrentino D, Gartner E (2008) Sustainable development and climate change initiatives. Cem Concr Res 38:115–127. doi: 10.1016/j.cemconres.2007.09.008 Google Scholar
  61. Das S, Yudhbir (2006) A simplified model for prediction of pozzolanic characteristics of fly ash, based chemical composition. Cem Concr Res 36:1827–1832. doi: 10.1016/j.cemconres.2006.02.020
  62. Davidovits J (1979) Synthesis of new high temperature geo-polymers for reinforced plastics/composites. SPE PACTEC 79 Society of Plastic Engineers, pp 151–154, Brookfield CenterGoogle Scholar
  63. Davidovits J (1994a) Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement. J Mater Educ 16:91–139Google Scholar
  64. Davidovits J (1994b) Properties of geopolymers cements. In: Proceedings of the 1st International conference on alkaline cements and concretes. Scientific Research Institute on Binders and Materials Kiev, Ukraine, pp 131–149Google Scholar
  65. Davidovits J (1999) Chemistry of geopolymeric systems terminology. In: Davidovits J, Davidovits R, James C (Eds) Proceedings of Géopolymère 99 2nd International Conference on geopolymers. Geopolymer Institute, France pp 9–40Google Scholar
  66. Davidovits J, Sawyer JL (1985) Early high strength mineral polymer. U.S. Patent 4.509.958Google Scholar
  67. Davidovits J, Comrie DC, Paterson JH, Ritcey DJ (1990) Geopolymeric concretes for environmental protection. ACI Concr Inter 12:30–40Google Scholar
  68. Davis R (1996) The impact of EU and UK environmental pressures on the future of sludge treatment and disposal. J CIWEM 10:65–69.  10.1111/j.1747-6593.1996.tb00010.x Google Scholar
  69. Day R, Shi Caijun (1994) Influence of the fineness of pozzolan on the strength of lime natural-pozzolan cement pastes. Cem Concr Res 8:1485–1491. doi: 10.1016/0008-8846(94)90162-7
  70. Day K, Holtze K, Metcalfe J, Bishop C, Dutka B (1993) Toxicity of leachate from automobile tyres to aquatic biota. Chemosphere 27:665–675. doi: 10.1016/0045-6535(93)90100-J Google Scholar
  71. Degryse P, Elsen J, Waelkens M (2002) Study of ancient mortars from Sagalassos (Turkey) in view of their conservation. Cem Concr Res 21:1457–1463. doi: 10.1016/S0008-8846(02)00807-4
  72. Dolezal J, Skvara F, Svoboda P, Sulc R, Kopecky L, Pavlasova S, Myskova L, Lucuk M, Dvoracek K (2007) Concrete based on fly ash geopolymers. Alkali activated materials-research, production and utilization 3rd conference, Prague, Czech Republic, pp 185–197Google Scholar
  73. Donatello S, Tyrer M, Cheeseman C (2010a) Comparison of test methods to assess pozzolanic activity. Cem Concr Compos 32:121–127. doi: 10.1016/j.cemconcomp.2009.10.008 Google Scholar
  74. Donatello S, Freeman-Pask A, Tyrer M, Cheeseman C (2010b) Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash. Cem Concr Compos 32:54–61. doi: 10.1016/j.cemconcomp.2009.09.002 Google Scholar
  75. Duxson P, Van Deventer J (2009) Commercialization of geopolymers for construction—opportunities and obstacles. In: Provis J, Deventer Van (eds) Structure, processing, properties and applications. Woodhead Publishing Limited Abingtone Hall, Cambridge, UK, pp 379–400Google Scholar
  76. Duxson P, Provis J, Luckey G, Van Deventer J (2007) The role of inorganic polymer technology in the development of “Green Concrete”. Cem Concr Res 37:1590–1597. doi: 10.1016/j.cemconres.2007.08.018
  77. Dyer T, Dhir R (2010) Evaluation of powdered glass cullet as a means of controlling harmful alkali-silica reaction. Mag Concr Res 62:749–759Google Scholar
  78. EDG (2004) European Union waste policy, LIFE Focus: a cleaner, greener Europe 3–6. ISBN 92-894-6018-0, ISSN 1725-5619. Luxembourg: Office for Official Publications of the European CommunitiesGoogle Scholar
  79. Eleazer W, Barlaz M, Whittle D (1992) Resource recovery alternatives for waste tires in North Carolina. School of Engineering, Civil Engineering Department, NCSU, USGoogle Scholar
  80. Elinwa A, Ejeh S (2004) Effects of the incorporation of sawdust waste incineration fly ash in cements pastes and mortars. J Asian Arch Build Eng 3:1–7. doi: 10.3130/jaabe.3.1 Google Scholar
  81. Elinwa A, Mahmood Y (2002) Ash from timber waste as cement replacement material. Cem Concr Compos 24:219–222. doi: 10.1016/S0958-9465(01)00039-7 Google Scholar
  82. Escalante-Garcia JI, Gorokhovsky AV, Mendonza G, Fuentes AF (2003) Effect of geothermal waste on strength and microstructure of alkali-activated slag cement mortars. Cem Concr Res 33:1567–1574. doi: 10.1016/S0008-8846(03)00133-9
  83. Escalante-Garcia JI, Mendez-Nodell J, Gorokhovsky AV, Fraire-Luna PE, Mancha-Molinar H, Mendoza-Suarez G (2002) Reactivity and mechanical properties of alkali activated blast furnace slag. Bol Soc Esp Ceram Vidrio 41:451–458Google Scholar
  84. Etxeberria M, Mari A, Vazquez E (2007) Recycled aggregate concrete as structural material. Mater Struct 40:529–541. doi: 10.1617/s11527-006-9161-5 Google Scholar
  85. Evangelista L, Brito J (2007) Mechanical behavior of concrete made with fine recycled concrete aggregates. Cem Concr Compos 29:397–401. doi: 10.1016/j.cemconcomp.2006.12.004
  86. Fajardo P, Valdez J (2009) Corrosion of steel rebar embedded in natural pozzolan based mortars exposed to chlorides. Constr Build Mater 23:768–774. doi: 10.1016/j.conbuildmat.2008.02.023 Google Scholar
  87. Federico L, Chidiac S (2009) Waste glass as a supplementary cementitious material in concrete-Critical review of treatment methods. Cem Concr Compos 31:606–610. doi: 10.1016/j.cemconcomp.2009.02.001
  88. Feng Q, Yamamichi H, Shova M, Sugita S (2004) Study on the pozzolanic properties of rice husk ash by hydrochloric acid pretreatment. Cem Concr Res 34:521–526. doi: 10.1016/j.cemconres.2003.09.005 Google Scholar
  89. Fernandez R, Martirena F, Scrivener K (2011) The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res 41:113–122. doi: 10.1016/j.cemconres.2010.09.013
  90. Fernandez-Jimenez A, Palomo A (2003) Characterization of fly ashes. Potential reactivity as alkaline cements. Fuel 82:2259–2265. doi: 10.1016/S0016-2361(03)00194-7 Google Scholar
  91. Fernandez-Jimenez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem Concr Res 35:1984–1992Google Scholar
  92. Fernandez-Jimenez A, Puertas F (1997) Alkali activated slag cements: kinetic studies. Cem Concr Res 27:359–368. doi: 10.1016/S0008-8846(97)00040-9
  93. Fernandez-Jimenez A, Palomo J, Puertas F (1999) Alkali activated slag mortars. Mechanical strength behaviour. Cem Concr Res 29:1313–1321. doi: 10.1016/S0008-8846(99)00154-4
  94. Ferreira R, Jalali S (2006) Quality control based on electrical resistivity measurements. In: Proceedings of the European symposium on service life and serviceability of the concrete structures, Helsink, FinlandGoogle Scholar
  95. Flower D, Sanjayan J (2007) Green house gas emissions due to concrete manufacture. Inter J Life Cycle Assess 12:282–288Google Scholar
  96. Foladori P, Gianni A, Ziglio G (2010) Sludge reduction technologies in wastewater treatment plants. IWA Publishing, LondonGoogle Scholar
  97. Fowler DW (1999) Polymers in concrete: a vision for the 21st century. Cem Concr Compos 21:449–452Google Scholar
  98. Franke L, Sisomphon K (2004) A new chemical method for analyzing free calcium hydroxide content in cementing material. Cem Concr Res 34:1161–1165. doi: 10.1016/j.cemconres.2003.12.003 Google Scholar
  99. Frias M, Villar-Cocina E, Sanchez de Rojas M, Valencia-Morales E (2005) The effect that different pozzolanic activity methods has on the kinetic constants of the pozzolanic reaction in sugar cane straw-clay ash/lime systems: application of a kinetic–diffusive model. Cem Concr Res 35:2137–2142. doi: 10.1016/j.cemconres.2005.07.005
  100. Fytili D, Zabaniotou A (2008) Utilization of sewage sludge in EU application of old and new methods—A review. Renew Sustainable Energy Rev 12:116–140. doi: 10.1016/j.cemconcomp.2009.02.001
  101. Ganjian E, Khorami M, Maghsoudi A (2009) Scrap-tyre-rubber replacement for aggregate and filler in concrete. Constr Build Mater 23:1828–1836Google Scholar
  102. Gartner E (2004) Industrially interesting approaches to low-CO2 cements. Cem Concr Res 34:1489–1498Google Scholar
  103. Gava G, Prudêncio L (2007a) Pozzolanic activity tests as a measure of pozzolans performance. Part 1. Mag Concr Res 59:729–734Google Scholar
  104. Gava G, Prudêncio L (2007b) Pozzolanic activity tests as a measure of pozzolans performance. Part 2. Mag Concr Res 59:735–741Google Scholar
  105. Ghaly A, Cahill J (2005) Correlation of strength, rubber content, and water to cement ratio in rubberized concrete. Can J Civil Eng 32:1075–1081Google Scholar
  106. Gjorv OE (1992) High strength concrete. In: Malhotra VM (ed) Advances in concrete technology, American Concrete Institute Montreal Canada, pp 21–77Google Scholar
  107. Glavind M (2009) Sustainability of cement, concrete and cement replacement materials in construction. In: Khatib J (ed) Sustainability of Construction Materials. WoodHead Publishing in Materials, Great Abington, Cambridge, pp 120–147Google Scholar
  108. Glukhovsky V (1959) Soil silicates. Gostroiizdat Publish, Kiev, USSRGoogle Scholar
  109. Glukhovsky VD, Rostovskaja GS, Rumyna GV (1980) High strength slag alkaline cements. 7th International congress on the chemistry of cementGoogle Scholar
  110. Gnecco L (1999) Building a shield room is not construction. Evaluation Eng 38Google Scholar
  111. Gore A (2009) Our choice. A plan to solve the climatic crisis. Rodale Books, EmausGoogle Scholar
  112. Gourley JT (2003) Geopolymers:opportunities for environmentally friendly construction materials. Materials 2003 Conference, Institute of Materials Engineering AustralasiaGoogle Scholar
  113. Gourley JT, Johnson GB (2005) Developments in geopolymer precast concrete. In: Proceedings of Geopolymer 2005 World congress, geopolymer green chemistry and sustainable development solutions, S. Quentin, France, pp 139–143Google Scholar
  114. Granizo ML (1998) Activation alcalina de metacaolin: Desarrolllo de nuevos materials cementantes. PhD thesis University Autoneoma of MadridGoogle Scholar
  115. Guleç A, Tulun A (1997) Physico-chemical and petrographical studies of old mortars and plasters of Anatolia. Cem Concr Res 27:227–234. doi: 10.1016/S0008-8846(97)00005-7
  116. Guneyisi E, Gesoglu M, Ozturan T (2004) Properties of rubberized concretes containing silica fume. J Cem Concr Res 34:2309–2317. doi: 10.1016/j.cemconres.2004.04.005 Google Scholar
  117. Hannawi K, Kamali-Bernard S, Prince W (2010) Physical and mechanical properties of mortars containing PET and PC waste aggregates. Waste Manag 30:2312–2320. doi: 10.1016/j.wasman.2010.03.028 Google Scholar
  118. Hardjito D, Wallah SE, Sumajouw D, Rangan BV (2002a) Research into engineering properties of geopolymer concrete. In: Proceedings of 2002 Geopolymer conference. Melbourne, AustraliaGoogle Scholar
  119. Hardjito D, Wallah SE, Sumajouw D, Rangan BV (2002b) Properties of geopolymer concrete with fly ash source material: effect of mixture composition. In: Proceedings of seventh CANMET/ACI International conference on recent advances in concrete technology, Las Vegas, USAGoogle Scholar
  120. Hazra PC, Krishnaswamy VS (1987) Natural pozzolans in India, their utility, distribution and petrogragraphy. Rec Geol Surv India 87:675–706Google Scholar
  121. He C, Makovic E, Osbaeck B (1995a) Thermal stability and pozzolanic activity of raw and calcined illite. Appl Clay Sci 9:337–354.doi: 10.1016/0169-1317(94)00033-M Google Scholar
  122. He C, Osbaeck B, Makovicky E (1995b) Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects. Cem Concr Res 25:1691–1702.doi: 10.1016/0008-8846(95)00165-4
  123. He C, Makovic E, Osbaeck B (2000) Thermal stability and pozzolanic activity of raw and calcined mixed-layer mica/smectite. Appl Clay Sci 17:141–161.doi: 10.1016/S0169-1317(00)00011-9
  124. Hermann E, Kunze C, Gatzweiler R, Kiebig G, Davidovits J (1999) Solidification of various radioactive residues by geopolymere with special emphasis on long term stability. In: Proceedings of 1999 geopolymere conference, pp 211–228Google Scholar
  125. Hossain M, Lachemi M, Sahmaran M (2009) Performance of cementitious building renders incorporating natural and industrial pozzolans under aggressive airborne marine salts. Cem Concr Compos 31:358–368.doi: 10.1016/j.cemconcomp.2009.03.005
  126. Houget V (1992) Etude dês caracteristiques mecaniques et physico-chimiques de composites ciments-fibres organiques. Ph.D. dissertation, Inst Nat Sci Appl, Lyon, FranceGoogle Scholar
  127. Hu S, Wang H, Zhang G, Ding Q (2008) Bonding and abrasion resistance of geopolymeric repair material made with steel slag. Cem Concr Compos 30:239–244. doi: 10.1016/j.cemconcomp.2007.04.004
  128. Huntzinger D, Eatmon T (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Cleaner Prod 17:668–675. doi: 10.1016/j.jclepro.2008.04.007 Google Scholar
  129. Jiang L, Liu Z, Ye Y (2004) Durability of concrete incorporating large volumes of low-quality fly ash. Cem Concr Res 34:1467–1469. doi: 10.1016/j.cemconres.2003.12.029
  130. Josa A, Aguado A, Cardim A, Byars E (2007) Comparative analysis of the life cycle impact assessment of available cement inventories in the EU. Cem Concr Res 37:781–788. doi: 10.1016/j.cemconres.2007.02.004 Google Scholar
  131. Kaid N, Cyr M, Julien S, Khelafi H (2009) Durability of concrete containing a natural pozzolan as defined by a performance-based approach. Constr Build Mater 23:3457–3467. doi: 10.1016/j.conbuildmat.2009.08.002 Google Scholar
  132. Katz A (1998) Microscopic study of alkali-activation fly ash. Cem Concr Res 28:197–208Google Scholar
  133. Khatib J (2009) Sustainability of construction materials. WoodHead Publishing in Materials, CambridgeGoogle Scholar
  134. Kiattikomol K, Jaturapitakkul C, Songpiriyakij S, Hutubtim S (2001) A study of ground coarse fly ashes with different fineness from various sources as pozzolanic materials. Cem Concr Compos 21:335–343. doi: 10.1016/S0958-9465(01)00016-6
  135. Kim J, Park C, Lee S, Lee S, Won J (2008) Effects of the geometry of recycled PET fibre reinforcement on shrinkage cracking of cement-based composites. Compos B 39:442–450. doi: 10.1016/j.compositesb.2007.05.001
  136. Kim S, Yi N, Kim H, Kim J, Song Y(2010) Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cem Concr Compos 32:232–240. doi: 10.1016/j.cemconcomp.2009.11.002 Google Scholar
  137. Kirschner A, Harmuth H (2002) Investigation of geopolymer binders with respect to their application for building materials. Ceramics–Silicaty 48:117–120.
  138. Kong D, Sanjayan J, Sagoe-Cretensil K (2008) Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures. J Mater Sci 43:824–831.  10.1007/s10853-007-2205-6 Google Scholar
  139. Krivenko P, Guziy S (2007) Fire resistant alkaline portland cements. Alkali activated materials—research, production and utilization 3rd conference, Prague, Czech Republic, pp 333–347Google Scholar
  140. Krizan D, Zivanovic B (2002) Effects of dosage and modulus of water glass on early hydration of alkali-slag cements. Cem Concr Res 32:1181–1188. doi: 10.1016/S0008-8846(01)00717-7
  141. Lachemi M, Jagnit-Hamou A, Aïtcin C (1998) Long-term performance of silica fume cement concretes. Concr Inst 20:59–65Google Scholar
  142. Lancellotti I, Kamseu E, Michelazzi M, Barbieri L, Corradi A, Leonelli C (2010) Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Manag 30:673–679. doi: 10.1016/j.wasman.2009.09.032 Google Scholar
  143. Laukaitis A, Zurauskas R, Keriené J (2005) The effect of foam polystyrene granules on cement composites properties. Cem Concr Compos 27:41–47. doi: 10.1016/j.cemconcomp.2003.09.004
  144. Lavat A, Trezza M, Poggi M (2009) Characterization of ceramic roof tile wastes as pozzolanic admixture. Waste Manag 29:1666–1674. doi: 10.1016/j.wasman.2008.10.019 Google Scholar
  145. Lea FM (1970) The chemistry of cement, 3rd edn. Edward Arnold ltd., LondonGoogle Scholar
  146. Lee W, Van Deventer J (2002a) The effect of ionic contaminants on the early-age properties of alcali-activated fly ash-based cements. Cem Concr Res 32:577–584. doi: 10.1016/S0008-8846(01)00724-4
  147. Lee W, Van Deventer J (2002b) The effects of inorganic salt contamination on the strength and durability of geopolymers. Coll Surf 211:115–126. doi: 10.1016/S0927-7757(02)00239-X Google Scholar
  148. Li G, Garrick G, Eggers J, Abadie C, Stubblefield M, Pang S (2004) Waste tire fiber modified concrete. Compos B35:305–312. doi: 10.1016/j.compositesb.2004.01.002 Google Scholar
  149. Lundin M, Olofsson M, Pettersson G, Zetterlund H (2004) Environmental and economic assessment of sewage sludge handling options. Res Cons Rec 41:255–278. doi: 10.1016/j.resconrec.2003.10.006 Google Scholar
  150. Luxán M (1976) Estudio de las puzolanas de origen volcánico mediante espectroscopia de absorción infrarroja-Cuadernos de Investigación. Instituto EduardoTorroja 32:5–21Google Scholar
  151. Luxan M, Madruga F, Saavedra J (1989) Rapid evaluation of pozzolanic activity of natural products by conductivity measurement. Cem Concr Res 19:63–68. doi: 10.1016/0008-8846(89)90066-5
  152. Malerious O (2003) Modelling the adsorption of mercury in the flue gas of sewage sludge incineration. Chem Eng J 96:197–205. doi: 10.1016/j.cej.2003.08.018
  153. Malhotra V(1978) Recycled concrete: a new aggregate. Can J Civil Eng 5:42–52Google Scholar
  154. Malhotra V (2007) Global warning and sustainability issues related to concrete technology. In: Proceedings of the International conference on sustainability in the cement and concrete industry, Lillehammer, NorwayGoogle Scholar
  155. Malhotra V, Mehta P (1996) Pozzolanic and cementitious materials. Gordon and Breacch Publisher, CanadaGoogle Scholar
  156. Malhotra V, Mehta P (2005) High performance, high-volume fly ash concrete: materials, mixture proportioning, properties, construction practice, and case histories. Supplementary Cementing Materials for Sustainable Development Inc., OttawaGoogle Scholar
  157. Malinowsky R (1991) Prehistory of concrete. Concr Inter 13:62–68Google Scholar
  158. Martín-Sedeño M, Cuberos A, De la Torre A, Álvarez-Pinazo G, Ordónez L, Gateshki M, Aranda M (2010) Aluminum-rich belite sulfoaluminate cements: clinkering and early age hydration. Cem Concr Res 40:359–369. doi: 10.1016/j.cemconres.2009.11.003 Google Scholar
  159. Marzouk O, Dheilly R, Queneudec M (2007) Valorization of post-consumer waste plastic in cementitious concrete composites. Waste Manag 27:310–318. doi: 10.1016/j.wasman.2006.03.012 Google Scholar
  160. McCarter W, Tran D (1996) Monitoring pozzolanic activity by direct activation with calcium hydroxide. Constr Build Mater 10:179–184. doi: 10.1016/0950-0618(95)00089-5
  161. Mccartthy M, Dhir R (1999) Towards maximising the use of fly ash as a binder. Fuel 78:121–123. doi: 10.1016/S0016-2361(98)00151-3 Google Scholar
  162. Mccartthy M, Dhir R (2004) Development of a high volume fly ash cements for use in concrete construction. Fuel 84:1423–1432. doi: 10.1016/j.fuel.2004.08.029 Google Scholar
  163. Mehta K (1998) Role of pozzolanic and cementitious material in sustainable development of the concrete industry. In: Proceedings of the 6th International Conference on the use of fly ash, silica fume, slag and natural pozzolans in concrete. SP 178 ACI International, pp 1–25Google Scholar
  164. Mehta K (2001) Reducing the environmental impact of concrete. Concr Intern 61–66.
  165. Mello D, Pezzin S, Amico S (2009) The effect of post consumer PET particles on the performance of flexible polyurethane foams. Polym Test 28:702–708. doi: 10.1016/j.polymertesting.2009.05.014 Google Scholar
  166. Menezes R, Ferreira H, Neves A, Ferreira H (2003) Characterization of ball clays from the coastal region of Paraiba state. Ceramica 49:120–127. doi: 10.1590/S0366-69132003000300003 Google Scholar
  167. Meyer C (2009) The greening of the concrete industry. Cem Concr Compos 31:601–605.  doi:10.1016/j.cemconcomp.2008.12.010 Google Scholar
  168. Monteny J, Belie N, Vincke E, Verstraete W, Taerwe L (2001) Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cem Concr Res 31:1359–1365. doi: 10.1016/S0008-8846(01)00565-8
  169. Monzo J, Paya J, Borrachero MV, Peris-Mota E (1999) Mechanical behavior of mortars containing sewage sludge ash (SSA) and Portland cements with different tricalcium aluminate content. Cem Concr Res 29:87–94. doi: 10.1016/S0008-8846(98)00177-X Google Scholar
  170. Mora E (2007) Life cycle, sustainability and the transcendent quality of building materials. Build Environ 42:1329–1334. doi: 10.1016/j.buildenv.2005.11.004 Google Scholar
  171. Moropoulou A, Bakolas A, Aggelakopoulou E (2004) Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis. Thermochim Acta 420:135–140. doi: 10.1016/j.tca.2003.11.059 Google Scholar
  172. Morsli K, De la Torre A, Zahir M, Aranda M (2007) Mineralogical phase analysis of alkali and sulfate bearing belite rich laboratory clinkers. Cem Concr Res 37:639–646. doi: 10.1016/j.cemconres.2007.01.012 Google Scholar
  173. Müller I (2004) Influence of silica fume addition on concretes physical properties and on corrosion behavior of reinfor cement bars. Cem Concr Comp 26:31–39. doi: 10.1016/S0958-9465(02)00120-8
  174. Mullick A, Babu K, Rao P (1986) Evaluation of pozzolanic activity and its impact on specification of blended cements. In: Proceedings of 8th international congress on the chemistry of cement, vol VI, pp 308–311Google Scholar
  175. Naceri A, Hamina M (2009) Use of waste brick as a partial replacement of cement in mortar. Waste Manag 29:2378–2384. doi: 10.1016/j.wasman.2009.03.026
  176. Nagdi K (1993) Rubber as an engineering material: guidelines for user. Hanser Publication, CincinnatiGoogle Scholar
  177. Naik T, Singh S (1991) Utilization of discarded tyres as construction materials for transportation facilities. Report N CBU-1991-02, UWM Center for by-products utilization. University of Wiscosin, MilwaukeeGoogle Scholar
  178. Naik T, Singh S, Wendorf R (1995) Applications of scrap tire rubber in asphaltic materials: state of the art assessment. Report N CBU-1995-02, UWM Center for by-products utilization. University of Wiscosin, MilwaukeeGoogle Scholar
  179. Neelamegan M, Dattatreya J, Harish K (2007) Effect of latex and fibber addition on mechanical and durability. Properties of sintered fly ash lightweight aggregate concrete mixtures. In: Proceedings of 12th International Congress on Polymers in Concrete, Chuncheon, Korea, pp 113–121Google Scholar
  180. Neville AM (1997) Properties of concrete, 4th edn. Wiley, New YorkGoogle Scholar
  181. Ochi T, Okubo S, Fukui K (2007) Development of recycled PET fibre and its application as concrete-reinforcing fibre. Cem Concr Compos 29:448–455. doi: 10.1016/j.cemconcomp.2007.02.002
  182. Ogawa H, Kano K, Mimura T, Nagai K, Shirai A, Ohama Y (2007) Durability performance of barrier penetrants on concrete surfaces. In: Proceedings of 12th International congress on polymers in concrete, Chuncheon, Korea, pp 373–382Google Scholar
  183. Ohama Y (1998) Polymer-based admixtures. Cem Concr Compos 20:189–212. doi: 10.1016/S0958-9465(97)00065-6
  184. Ohama Y (2010) Concrete–polymer composites: the past, present and future. 12th International Congress on Polymers on Concrete, Madeira, Portugal, pp 1–13Google Scholar
  185. Oiknomou N, Stefanidou M, Mavridou S (2006) Improvement of the bonding between rubber tire particles and cement paste in cement products. 15th Conference of the technical chamber of greece, Alexandroupoli, Greece, pp 234–242Google Scholar
  186. Oikonomou N, Mavridou S (2009) The use of waste tyre rubber in civil engineering works. In: Khatib J (ed) Sustainability of construction materials. WoodHead Publishing Limited, Abington Hall, CambridgeGoogle Scholar
  187. Oliveira L, Jalali S, Fernandes J, Torres E (2005) L′emploi de métakaolin dans la production de béton écologiquement efficace. Mater Struct 38:403–410. doi: 10.1617/14186 Google Scholar
  188. Ozkan S, Gjorv O (2008) Electrical resistivity measurements for the quality control during concrete construction. ACI Mater J 105:541–547Google Scholar
  189. Pacewska B, Bukowska M, Wilińska I, Swat M (2002) Modification of the properties of concrete by a new pozzolan—A waste catalyst from the catalytic process in a fluidized bed. Cem Concr Res 32:145–152. doi: 10.1016/S0008-8846(01)00646-9 Google Scholar
  190. Pacheco-Torgal F (2007) Development of alkali-activated binders based on mine waste mud form the Panasqueira mine. Ph.D. thesis, UBI, Covilhã, PortugalGoogle Scholar
  191. Pacheco-Torgal F, Jalali S (2009) sulfuric acid resistance of plain, polymer modified, and fly ash cement concretes. Constr Build Mater 23:3485–3491. doi: 10.1016/j.conbuildmat.2009.08.001
  192. Pacheco-Torgal F, Jalali S (2010) Reusing ceramic wastes in concrete. Constr Build Mater 24:832–838. doi: 10.1016/j.conbuildmat.2009.10.023 Google Scholar
  193. Pacheco-Torgal F, Jalali S (2011) Using metakaolin to improve the sustainability of fly ash based concrete. Intern J Sustainable EngGoogle Scholar
  194. Pacheco-Torgal F, Gomes JP, Jalali S (2005) Geopolymeric binder using tungsten mine waste: preliminary investigation. In: Proceedings of Geopolymer 2005 World congress, S. Quentin, France, pp 93–98Google Scholar
  195. Pacheco-Torgal F, Gomes JP, Jalali S (2006) Bond strength between concrete substrate and repair materials. Comparisons between Tungsten mine waste geopolymeric binder versus current commercial repair products. In: Proceedings of the 7th International congress on advances in civil engineering, Turquey, p 482Google Scholar
  196. Pacheco-Torgal F, Gomes JP, Jalali S (2007a) Durability and environmental performance of alkali-activated tungsten mine waste mud mortars. J Mater Civil Eng 22:897–904.  10.1061/(ASCE)MT.1943-5533.0000092 Google Scholar
  197. Pacheco-Torgal F, Gomes JP, Jalali S (2007b) Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders. Cem Concr Res 37:933–941. doi: 10.1016/j.cemconres.2007.02.006
  198. Pacheco-Torgal F, Gomes JP, Jalali S (2008a) Investigations on mix design of tungsten mine waste geopolymeric binders. Constr Build Mater 22:1939–1949. doi: 10.1016/j.conbuildmat.2007.07.015
  199. Pacheco-Torgal F, Gomes J P, Jalali S (2008b) Properties of tungsten mine waste geopolymeric binder. Constr Build Mater 22:1201–1211. doi: 10.1016/j.conbuildmat.2007.01.022 Google Scholar
  200. Pacheco-Torgal F, Gomes JP, Jalali S (2008c) Adhesion characterization of tungsten mine waste geopolymeric binder. Influence of OPC concrete substrate surface treatment. Constr Build Mater 22:154–161. doi: 10.1016/j.conbuildmat.2006.10.005
  201. Pacheco-Torgal F, Gomes JP, Jalali S (2009a) Tungsten mine waste geopolymeric binders. Preliminary hydration products. Constr Build Mater 23:200–209. doi: 10.1016/j.conbuildmat.2008.01.003
  202. Pacheco-Torgal F, Gomes JP, Jalali S (2009b) Utilization of mining wastes to produce geopolymer binders. In: Provis J, Van Deventer J (eds) Geopolymers, structure, processing, properties and applications. Woodhead Publishing Limited, Abington Hall, CambridgeGoogle Scholar
  203. Palmer W (2010) The fly ash threat. Concr Prod 28:29–34Google Scholar
  204. Palomo A, Palacios M (2003) Alkali-activated cementitious materials: alternative matrices for the immobilisation of hazardous wastes Part II. Stabilisation of chromium and lead. Cem Concr Res 33:289–295. doi: 10.1016/S0008-8846(02)00964-X
  205. Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vasquez T, Grutzeck MW (1999a) Chemical stability of cementitious materials based on metakaolin. Cem Concr Res 29:997–1004. doi: 10.1016/S0008-8846(99)00074-5 Google Scholar
  206. Palomo A, Grutzek MW, Blanco MT (1999b) Alkali-activated fly ashes. A cement for the future. Cem Concr Res 29:1323–1329. doi: 10.1016/S0008-8846(98)00243-9
  207. Pan S, Tseng D, Lee C (2002) Use of sewage sludge ash as fine aggregate and pozzolan in portland cement mortar. J Solid Waste Technol Manag 28:121–130Google Scholar
  208. Panyakapo P, Panyakapo M (2008) Reuse of thermosetting plastic waste for lightweight concrete. Waste Manag 28:1581–1588. doi: 10.1016/j.wasman.2007.08.006 Google Scholar
  209. Papadakis V, Fardis M, Vayenas C (1992) Hydration and carbonation of pozzolanic cements. ACI Mater J 89(2):119–130Google Scholar
  210. Park S, Lee B (1993) Mechanical properties of carbon fiber-reinforced polymer-impregnated cement composites. Cem Concr Compos 15:153–163. doi: 10.1016/0958-9465(93)90004-S
  211. Pawlasova S, Skavara F (2007) High-temperature properties of geopolymer materials. Alkali activated materials-research, production and utilization 3rd conference, Prague, Czech Republic, pp 523–524Google Scholar
  212. Paya J, Borrachero M, Monzo J, Peris-Mora E, Amahjour F (2001) Enhanced conductivity measurements techniques for evaluation of fly ash pozzolanic activity. Cem Concr Res 31:41–49. doi: 10.1016/S0008-8846(00)00434-8 Google Scholar
  213. Payá J, Borrachero M, Monzó J, Soriano L (2009) Studies on the behavior of different spent fluidized-bed catalytic cracking catalysts on Portland cement. Mater Constr 59:37–52Google Scholar
  214. Perná I, Hanzlicek T, Straka P, Steinerova M (2007) Utilization of fluidized bed ashes in thermal resistance applications. Alkali activated materials-research, production and utilization 3rd conference, Prague, Czech Republic, pp 527–537Google Scholar
  215. Phair J, Smith J, Van Deventer J (2004) Effect of Al source and alkali-activation on Pb and Cu immobilisation in fly ash-based geoplymers. Appl Geochem 19:423–434Google Scholar
  216. Pigeon M, Azzabi M, Pleau R (1996a) Can microfibers prevent frost damage? Cem Concr Res 26:1163–1170. doi: 10.1016/0008-8846(96)00098-1 Google Scholar
  217. Pigeon M, Pleau R, Azzabi M, Banthia N (1996b) Durability of microfiber-reinforced mortars. Cem Concr Res 26:1163–1170. doi: 10.1016/0008-8846(96)00015-4 Google Scholar
  218. Pinto AT (2004) Alkali-activated metakaolin based binders. Ph.D. thesis, University of Minho, PortugalGoogle Scholar
  219. Popescu C, Muntean M, Sharp J (2003) Industrial trial production of low energy belite cement. Cem Concr Compos 25:689–693. doi: 10.1016/S0958-9465(02)00097-5
  220. Pourkhorshidi A, Najimi M, Parhizkar T, Hillemeier B, Herr R (2010a) A comparative study of the evaluation methods for pozzolans. Adv Cem Res 22:157–164. doi: 10.1680/adcr.2010.22.3.157 Google Scholar
  221. Pourkhorshidi A, Najimi M, Parhizkar T, Jafarpour F, Hillemeier B (2010b) Applicability of the standard specifications of ASTM C618 for evaluation of natural pozzolans. Cem Concr Compos 32:794–800. doi: 10.1016/j.cemconcomp.2010.08.007
  222. Puertas F, Fernandez-Jimenez A (2003) Mineralogical and microstrutural characterisation of alcali-activated fly ash/slag pastes. Cem Concr Compos 25:287–292. doi: 10.1016/S0958-9465(02)00059-8
  223. Puertas F, Martinez-Ramirez S, Alonso S, Vasquez T (2000) Alkali-activated fly ash/slag cement. Strength behaviour and hydration products. Cem Concr Res 30:1625–1632. doi: 10.1016/S0008-8846(00)00298-2
  224. Puertas F, Garcia-Diaz I, Barba A, Gazulla M, Palacios M, Gomez M, Martinez-Ramirez S (2008) Ceramic wastes as alternative raw materials for Portland cement clinker production. Cem Concr Compos 30:798–805. doi: 10.1016/j.cemconcomp.2008.06.003
  225. Purdon AO (1940) The action of alkalis on blast furnace slag. J Soc Chem Ind 59:191–202Google Scholar
  226. Qian G, Sun D, Tay J (2003) Characterization of mercury and zinc-doped alkali-activated slag matrix. Part II. Zinc. Cem Concr Res 33:1271–1262. doi: 10.1016/S0008-8846(03)00046-2
  227. Qiao F, Chau C, Li Z (2009) Setting and strength development of magnesium phosphate cement paste. Adv Mater Res 21:175–180.  10.1680/adcr.9.00003
  228. Qiao F, Chau C, Li Z (2010) Property evaluation of magnesium phosphate cement mortar as patch repair material. Constr Build Mater 24:695–700. doi: 10.1016/j.conbuildmat.2009.10.039 Google Scholar
  229. Quillin K (2001) Performance of belite–sulfoaluminate cements. Cem Concr Res 31:1341–1349. doi: 10.1016/S0008-8846(01)00543-9 Google Scholar
  230. Raghavan D, Huynh H, Ferraris C (1998) Workability, mechanical properties, and chemical stability of a recycled tyre rubber filled cementitious composite. J Mater Sci 33:1745–1752. doi: 10.1023/A:1004372414475 Google Scholar
  231. Rahhal V (2002) Characterization of pozzolanic additions by conduction calorimetry. Ph.D. Thesis, Politechnic University of Madrid, E.T.S. Ings. Caminos, Canales y PuertosGoogle Scholar
  232. Rahhal V, Talero R (2010) Fast physics-chemical and calorimetric characterization of natural pozzolans and other aspects. J Therm Anal Calorim 99:479–486. doi: 10.1007/s10973-009-0016-5 Google Scholar
  233. Rahier H, Van Melle B, Biesemans M, Wastiels J, Wu X (1996) Low temperature synthesized aluminosilicate glasses Part Ι. Low temperature reaction stoichimetry and structure of a model compound. J Mater Sci 31:71–79. doi: 10.1007/BF00355129 Google Scholar
  234. Rahier H, Simons W, Van Melle B, Biesemans M (1997) Low temperature synthesized aluminosilicate glasses Part ΙΙΙ. Influence of composition of the silica solution on production, structure and properties. J Mater Sci 32:2237–2247. doi: 10.1023/A:1018563914630 Google Scholar
  235. Ramachandran V (1932) Concrete admixtures handbook. Properties science and technology. Noyes Publications, Park RidgeGoogle Scholar
  236. Rassk E, Bhaskar M (1975) Pozzolanic activity of pulverized fuel ash. Cem Concr Res 5:363–376. doi: 10.1016/0008-8846(75)90091-5 Google Scholar
  237. Reza F, Batson J, Yamamuro J, Lee J (2003) Resistant changes during compression of carbon fiber cement composites. J Mater Civil Eng 15:476–483. doi: 10.1061/(ASCE)0899-1561(2003)15:5(476) Google Scholar
  238. Rodriguez-Camacho R, Uribe-Afif R (2002) Importance of using the natural pozzolans on concrete durability. Cem Concr Res 32:1851–1858. doi: 10.1016/S0008-8846(01)00714-1
  239. Rosell-Lam M, Villar-Cocina E, Frias M (2011) Study on the pozzolanic properties of a natural Cuban zeolitic rock by conductometric method: kinetic parameters. Constr Build Mater 25:644–650. doi: 10.1016/j.conbuildmat.2010.07.027
  240. Roskovic R, Bjegovic D (2005) Role of mineral additions in reducing CO2 emission. Cem Concr Res 35:974–978. doi: 10.1016/j.cemconres.2004.04.028 Google Scholar
  241. Rossignolo J (2005) Porosity and calcium hydroxide content of portland cement pastes with active sílica and SBR látex. R Mater 10:437–442Google Scholar
  242. Rowles M, O′Connor B (2003) Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthetised by sodium silicate activation of metakaolinite. J Mater Chem 13:1161–1165Google Scholar
  243. Roy D (1987) Hydration of blended cements containing slag, fly ash or sílica fume. In: Proceedings of Meeting Institute of Concrete Technology, Coventry, UK, pp 29–31Google Scholar
  244. Roy DM, Langton C (1989) Studies of ancient concretes as analogs of cementituos sealing materials for repository in Tuff. L A-11527-MS, Los Alamos Nacional Laboratory, Los AlamosGoogle Scholar
  245. Sabir B, Wild S, Bai J (2001) Metakaolin and calcined clays as pozzolans for concrete: a review. Cem Concr Compos 23:441–454. doi: 10.1016/S0958-9465(00)00092-5 Google Scholar
  246. Sahayan A, Xu A (20049 Value-added utilisation of waste glass in concrete. Cem Concr Res 34:81–89. doi: 10.1016/S0008-8846(03)00251-5 Google Scholar
  247. Sbordoni-Mora L (1981) Les matériaux des enduits traditionnels, In: Proceedings of ICCROM symposium mortars, cements and grouts used in the conservation of historic buildings, Rome, pp 375–385Google Scholar
  248. Scrivener K, Kirkpatrick R (2008) Innovation in use and research on cementitious material. Cem Concr Res 38:128–136. doi: 10.1016/j.cemconres.2007.09.025 Google Scholar
  249. Segre N, Joekes I (2000) Use of tire rubber particles as addition to cement paste. Cem Concr Res 30:1421–1425. doi: 10.1016/S0008-8846(00)00373-2 Google Scholar
  250. Segre N, Monteiro P, Sposito G (2002) Surface characterization of recycled tire rubber to be used in cement paste matrix. J Coll Interface Sci 248:521–523. doi: 10.1016/S0008-8846(00)00373-2 Google Scholar
  251. Shao Y, Lefort T, Moras S, Rodriguez D (2000) Studies on concrete containing ground waste glass. Cem Concr Res 30:91–100. doi: 10.1016/S0008-8846(99)00213-6
  252. Shao-Dong Wang, Scrivener K, Pratt P (1994) Factors affecting the strength of alkali-activated slag. Cem Concr Res 24:1033–1043. doi: 10.1016/0008-8846(94)90026-4 Google Scholar
  253. Sharp J, Lawrence C, Yang R (1999) Calcium sulfoaluminate cements—low energy cements special cements or what? Adv Cem Res 11:3–13Google Scholar
  254. Shi C, Day R (1995) A calorimetric study of early hydration of alkali-slag cements. Cem Concr Res 25:1333–1346. doi: 10.1016/0008-8846(95)00126-W
  255. Shirai A, Kano K, Nagai K, Ide K, Ogawa H, Ohama Y (2007) Basic properties of barrier penetrants as polymeric impregnants for concrete surfaces. 12th International congress on polymers in concrete, Chuncheon, Korea, pp 607–615Google Scholar
  256. Silva D, Betioli A, Gleize P, Roman H, Gomez L, Ribeiro J (2005) Degradation of recycled PET fibers in Portland cement-based materials. Cem Concr Res 35:1741–1746. doi: 10.1016/j.cemconres.2004.10.040 Google Scholar
  257. Sinthaworn S, Nimityongskul P (2009) Quick monitoring of pozzolanic reactivity of waste ashes. Waste Manag 29:1526–1531. doi: 10.1016/j.wasman.2008.11.010 Google Scholar
  258. Sisomphon K, Franke L (2011) Evaluation of calcium hydroxide contents in pozzolanic cement pastes by a chemical extraction method. Constr Build Mater 25:190–194. doi: 10.1016/j.conbuildmat.2010.06.039
  259. Song X, Marosszeky M, Brungs M, Munn R (2005) Durability of fly ash-based geopolymer concrete against sulfuric acid attack. 10th International Conference on Durability of Building Materials and Components, Lyon, FranceGoogle Scholar
  260. Song H, Pack S, Nam S, Jang J, Saraswathy V (2010) Estimation of the permeability of silica fume cement concrete. Constr Build Mater 24:315–321. doi: 10.1016/j.conbuildmat.2009.08.033
  261. Soudée E, Péra J (2000) Mechanism of setting reaction in magnesia-phosphate cements. Cem Concr Res 30:315–321. doi: 10.1016/S0008-8846(99)00254-9 Google Scholar
  262. Sousa Coutinho J (2003) The combined benefits of CPF and RHA in improving the durability of concrete structures. Cem Concr Comp 25:51–59. doi: 10.1016/S0958-9465(01)00055-5
  263. Sumajow M, Rangan B (2006) Low-calcium fly ash-based geopolymer concrete: reinforced beams and columns. research report GC, Curtin University of Technology, Perth, AustraliaGoogle Scholar
  264. Swanepoel J, Strydom C (2002) Utilization of fly ash in a geopolymeric material. Appl Geochem 17:1143–1148. doi: 10.1016/S0883-2927(02)00005-7 Google Scholar
  265. Talling B, Brandstetr J (1989) Present state and future of alkali-activated slag concretes. 3rd International Conference on fly ash, silica fume, slag and natural pozzolans in concrete, Trondheim, Norway, pp 1519–1546Google Scholar
  266. Tashiro C, Ikeda K, Inoue Y (1994) Evaluation of pozzolanic activity by the electric resistance measurement method. Cem Concr Res 24:1333–1139. doi: 10.1016/0008-8846(94)90037-X
  267. Tiruta-Barna L, Benetto E, Perrodin Y (2007) Environmental impact and risk assessment of mineral wastes reuse strategies: Review and critical analysis of approaches and applications. Resour Conser Recy 50:351–379. doi: 10.1016/j.resconrec.2007.01.009 Google Scholar
  268. Tyrer M, Cheeseman C, Greaves R, Claisse P, Ganjian E, Kay M, Churchman-Davies J (2010) Potential for carbon dioxide reduction from cement industry through increased use of industrial pozzolans. Adv Appl Ceram 109:275–279. doi:  10.1179/174367509X12595778633282 Google Scholar
  269. Uzal B, Turanli L, Yucel H, Goncuoglu M, Culfaz A (2010) Pozzolanic activity of clinoptilotite: a comparative study with silica fume, fly ash and a non-zeolitic natural pozzolan. Cem Concr Res 40:398–404. doi: 10.1016/j.cemconres.2009.10.016
  270. Van den Heede P, Gruyaerta E, De Belie N (2010) Transport properties of high-volume fly ash concrete: capillary water sorption, water sorption under vacuum and gas permeability. Cem Concr Compos 32:749–756. doi: 10.1016/j.cemconcomp.2010.08.006 Google Scholar
  271. Van Deventer J, Provis J, Duxson P, Brice D (2010) Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valoriz 1:145–155. doi:  10.1007/s12649-010-9015-9
  272. Van Gemert D, Knapen E (2010) Contribution of C-PC to sustainable construction procedures. International Congress on Polymers on Concrete, Madeira, Portugal, pp 27–36Google Scholar
  273. Van Jaarsveld J, Van Deventer J (1999) The effect of metal contaminants on the formation and properties of waste-based geopolymers. Cem Concr Res 29:1189–1200. doi: 10.1016/S0008-8846(99)00032-0 Google Scholar
  274. Van Jaarsveld J, Van Deventer J, Lorenzen L (1997) The potential use of geopolymeric materials to immobilize toxic metals: Part I. Theory and applications. Min Eng 10:659–669Google Scholar
  275. Van Jaarsveld J, Van Deventer J, Lorenzen L (1998) Factors affecting the immobilisation of metals in geopolymerised fly ash. Metall Mater Trans B 29:283–291Google Scholar
  276. Van Jaarsveld J, Van Deventer J, Lukey GC (2003) The characterisation of source materials in fly ash-based geopolymers. Mater Lett 57(7):1272–1280. doi: 10.1016/S0167-577X(02)00971-0 Google Scholar
  277. Vieira R, Soares R, Pinheiro S, Paiva O, Eleutério J, Vasconcelos R (2010) Completely random experimental design with mixture and process variables for optimization of rubberized concrete. Constr Build Mater 24:1754–1760. doi: 10.1016/j.conbuildmat.2010.02.013
  278. Villar-Cocina E, Valencia-Morales E, Gonzalez-Rodriguez R, Hernandez-Ruiz J (2003) Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical measurement: a kinetic–diffusive model. Cem Concr Res 33:517–524. doi: 10.1016/S0008-8846(02)00998-5 Google Scholar
  279. Vinsova H, Jedinakova-Krizova G, Sussmilch J (2007) Immobilization of toxic contaminants into aluminosilicate matrixes. In: Proceedings of alkali activated materials—research, production and utilization 3rd conference, Prague, Czech Republic, pp 735–736Google Scholar
  280. Wang S (1991) Review of recent research on alkali-activated concrete in China. Mag Concr Res 43:29–35. doi: 10.1680/macr.1991.43.154.29 Google Scholar
  281. Wang Shao-Dong, Scrivener K (1995) Hydration products of alkali activated slag cement. Cem Concr Res 25:561–571. doi: 10.1016/0008-8846(95)00045-E
  282. Wang Y, Backer S, Li V (1987) An experimental study of synthetic fibre reinforced cementitious composites. J Mater Sci 22:4281–4291. doi: 10.4028/ Google Scholar
  283. Wang H, Li H, Yan F (2005) Synthesis and tribological behaviour of metakaolinite-based geopolymer composites. Mater Lett 59:3976–3981Google Scholar
  284. Wang H, Xue M, Cao J (2011) Research on the durability of magnesium phosphate cement. Adv Mater Res 170:1864–1868. doi: 10.4028/ Google Scholar
  285. Wansom S, Janjaturaphan S, Sinthupinyo S (2010) Characterizing pozzolanic activity of rice husk ash by impedance spectroscopy. Cem Concr Res 40:1714–1722. doi: 10.1016/j.cemconres.2010.08.013 Google Scholar
  286. WBCSD (2010) End-of-life tyres: a framework for effective management systems.…/Appendices-TiresFrameworkForEffectiveELTManagementSystems-Final.pdf
  287. Weil M, Dombrowski K, Buchwald A (2009) Life-cycle analysis of geopolymers. In: Provis J, Van Deventer J (eds) Geopolymers, structure, processing, properties and applications, ISBN-13: 978 1 84569 449 4. Woodhead Publishing Limited, Abington Hall, CambridgeGoogle Scholar
  288. Wen S, Chung D (2001) Effect of carbon fiber grade on electrical behavior of carbon fiber reinforced cement. Carbon 39:369–373. doi: 10.1016/S0008-6223(00)00127-5 Google Scholar
  289. Wen S, Chung D (2005) Strain-sensing characteristics of carbon fiber reinforced cement. ACI Mater J 39:244–248.…/Strainsensing%20characteristics%20of%20carbon%20fiber.pdfGoogle Scholar
  290. Wen S, Chung D (2006) Self sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars. Carbon 44:369–373. doi: 10.1016/j.carbon.2005.12.009 Google Scholar
  291. Weng L, Sagoe-Crentsil K, Brown T, Song S (2005) Effects of aluminates on the formation of geopolymers. Mater Sci Eng 117:163–168. doi: 10.1016/j.mseb.2004.11.008 Google Scholar
  292. Wild S, Khatib JM (1997) Portlandite consumption in metakaolin cement paste and mortars. Cem Concr Res 27:137–146. doi: 10.1016/S0008-8846(96)00187-1
  293. Winnefeld F, Lothenbach B (2010) Hydration of calcium sulfoaluminate cements—Experimental findings and thermodynamic modeling. Cem Concr Res 40:1239–1247. doi: 10.1016/j.cemconres.2009.08.014 Google Scholar
  294. Xie Z, Xi Y (2001) Hardening mechanisms of an alkaline-activated class F fly ash. Cem Concr Res 31:1245–1249. doi: 10.1016/S0008-8846(01)00571-3 Google Scholar
  295. Xu H, Van Deventer J (2000) The geopolymerisation of alumino-silicate minerals. Inter J Mineral Process 59:247–266. doi: 10.1016/S0301-7516(99)00074-5 Google Scholar
  296. Xu H, Van Deventer J (2002) Geopolymerisation of multiple minerals. Minerals Eng 15:1131–1139. doi: 10.1016/S0892-6875(02)00255-8 Google Scholar
  297. Yadav I (2008) Laboratory investigations of the properties of the concrete containing recycled plastic aggregates. Master of Engineering in Structural Engineering, Thapar University, Patiala, IndiaGoogle Scholar
  298. Yang Q, Wu X (1999) Factors influencing properties of phosphate cement-based binder for rapid repair of concrete. Cem Concr Res 29:389–396. doi: 10.1016/S0008-8846(98)00230-0
  299. Yang Q, Zhu B, Wu X (2000) Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete. Mater Struct 33:229–234. doi: 10.1007/BF02479332 Google Scholar
  300. Yang Q, Zhang S, Wu X (2002) Deicer-scaling resistance of phosphate cement-based binder for rapid repair of concrete. Cem Concr Res 32:165–168. doi: 10.1016/S0008-8846(01)00651-2
  301. Yang Z, Shi X, Creighton A, Peterson M (2008) Effect of styrene-butadiene rubber latex on the chloride permeability and microstructure of Portland cement mortar. Constr Build Mater 23:2283–2290. doi: 10.1016/j.conbuildmat.2008.11.011 Google Scholar
  302. Yellishetty M, Karpe V, Reddy E, Subhash K, Ranjith P (2008) Reuse of iron ore mineral wastes in civil engineering constructions: A case study. Res Conserv Recycl 52:1283–1289. doi: 10.1016/j.resconrec.2008.07.007 Google Scholar
  303. Yip C, Van Deventer J (2003) Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J Mater Sci 38:3851–3860. doi: 10.1023/A:1025904905176 Google Scholar
  304. Yu Q, Sawayama K, Sugita S, Shoya M, Isojima Y (1999) Reaction between rice husk ash and Ca(OH)2 solution and the nature of its product. Cem Concr Res 29:37–43. doi: 10.1016/S0008-8846(98)00172-0
  305. Zain M, Islam M, Mahmud F, Jamil M (2011) Production of rice husk ash for use in concrete as a supplementary cementitious material. Constr Build Mater 25:798–805. doi: 10.1016/j.conbuildmat.2010.07.003
  306. Zerbino R, Giaccio G, Isaia G (2011) Concrete incorporating rice husk ash without processing. Constr Build Mater 25:371–378. doi: 10.1016/j.conbuildmat.2010.06.016 Google Scholar
  307. Zheng L, Huo S, Yuan Y (2008a) Experimental investigation on dynamic properties of rubberized concrete. Constr Build Mater 22:939–947. doi: 10.1016/j.conbuildmat.2007.03.005
  308. Zheng L, Huo X, Yuan Y (2008b) Strength, modulus of elasticity, and brittleness index of rubberized concrete. J Mater Civil Eng 20:692–699. doi: 10.1061/(ASCE)0899-1561(2008)20:11(692) Google Scholar
  309. Zhihua P, Dongxu L, Jian Y, Nanry Y (2002) Hydration products of alkali-activated slag red mud cementitious material. Cem Concr Res 32:357–362. doi: 10.1016/S0008-8846(01)00683-4 Google Scholar
  310. Zhihua P, Dongxu L, Jian Y, Nanry Y (2003) Properties and microstructure of the hardened alkali-activated red mud-slag cimentitious material. Cem Concr Res 33:1437–1441. doi: 10.1016/S0008-8846(03)00093-0 Google Scholar
  311. Zornoza E, Garcés P, Payá J, Climent M (2009) Improvement of the chloride ingress resistance of OPC mortars by using spent cracking catalyst. Cem Concr Res 39:126–139Google Scholar

Copyright information

© Springer-Verlag London Limited  2011

Authors and Affiliations

  1. 1.C-TAC Research UnitUniversity of MinhoGuimarãesPortugal
  2. 2.Department of Civil EngineeringUniversity of MinhoGuimarãesPortugal

Personalised recommendations