Worldwide energy consumption is the main cause for the majority of carbon dioxide emissions. This chapter analyzes the embodied energy and how thermal energy efficiency increases its importance. Considerations about conventional thermal insulation materials, insulation materials made from natural materials and high performance insulation materials are made. This chapter also describes phase change materials (PCMs), and their importance to reduce peak room temperatures and energy demand.


Operational Energy Phase Change Material Carbon Dioxide Emission Hemp Fibre Thermal Insulation Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alawadhi E (2008) Thermal analysis of a building brick containing phase change material. Energy Build 40:351–357. doi: 10.1016/j.enbuild.2007.03.001 CrossRefGoogle Scholar
  2. Athienitis A, Liu C, Hawe D, Hanu D, Feldman D (1997) Investigation of the thermal performance of a passive-solar test-room with wall latent-heat storage. Build Environ 32:405–410. doi: 10.1016/S0360-1323(97)000097 CrossRefGoogle Scholar
  3. Baetens R, Jelle B, Thue J, Tenpierik M, Grynning S, Uvslokk S, Gustavsen A (2010) Vacuum insulation panels for building applications: a review and beyond. Energy Build 42:147172. doi: 10.1016/j.enbuild.2009.09.005 Google Scholar
  4. Baetens R, Jelle B, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43:761–769. doi: 10.1016/j.enbuild.2010.12.012 CrossRefGoogle Scholar
  5. Berge B (2009) The ecology of building materials, 2nd edn edn. Architectural Press, OxfordGoogle Scholar
  6. Cabeza L, Castellon C, Nogués M, Medrano M, Leppers R, Zubillaga O (2007) Use of microencapsulated PCM in concrete walls for energy savings. Energy Build 39:113–119. doi: #10.1016/j.enbuild.2006.03.030 CrossRefGoogle Scholar
  7. Collet F (2004) Caracterisation hydrique et thermique des materiaux á faibles impacts environnementaux. Ph.D. Thesis, INSA, RennesGoogle Scholar
  8. Collet F, Achchaq F, Djellab K, Marmoret L, Beji H (2011) Water vapor properties of two hemp wools manufactured with different treatments. Constr Build Mater 25:1079–1085. doi: 10.1016/j.conbuildmat.2010.06.069 CrossRefGoogle Scholar
  9. Darkwa K, Kim J (2004) Heat transfer in neuron-composite laminated phase-change drywall. J Power Energy Proc Inst Mech Eng 218:83–88. doi: 10.1243/095765004773644085 CrossRefGoogle Scholar
  10. Darkwa K, Kim J (2005) Dynamics of energy storage in phase-change drywall systems. Int J Energy Res 29:335–343. doi: 10.1002/er.1062 CrossRefGoogle Scholar
  11. Darkwa K, O'Callaghan P, Tetlow D (2006) Phase-change drywalls in a passive-solar building. Appl Energy 83:425–435. doi: 10.1016/j.apenergy.2005.05.001 CrossRefGoogle Scholar
  12. Dimoudi A, Tompa C (2008) Energy and environmental indicators related to construction of office buildings. Res Conserv Recycl 53:86–95. doi: 10.1016/j.resconrec.2008.09.008 CrossRefGoogle Scholar
  13. ERA (2007) A new energy ERA-Efficiency, renewables and clean thermal generation and advanced grid and strorage infrastructure. Vision paper for the EU strategic energy technology plan, Portuguese Ministery of Economy and Inovation. LisbonGoogle Scholar
  14. Fricke J, Heinemann U, Ebert H (2008) Vacuum insulation panels—From research to market. Vacuum 82:680–690. doi: 10.1016/j.vacuum.2007.10.014 CrossRefGoogle Scholar
  15. Goggins J, Keane T, Kelly A (2010) The assessment of embodied energy in typical reinforced concrete building structures in Ireland. Energy Build. 42:735–744. doi: 10.1016/j.enbuild.2009.11.013 CrossRefGoogle Scholar
  16. Gonzalez M, Navarro J (2006) Assessment of the decrease of CO2 emissions in the construction field through the selection of materials. Build Environ 41:902–909. doi: 10.1016/j.buildenv.2005.04.006 CrossRefGoogle Scholar
  17. Goverse T, Kekkert M, Groenewegen P, Worrell E, Smits R (2001) Wood innovation in the residential construction sector: opportunities and constraints. Res Conserv Recycl 34:53–74. doi: 10.1016/S0921-3449(01)00093-3 CrossRefGoogle Scholar
  18. Hammond G, Jones C (2008) Inventory of carbon and energy (ICE) Version 1,6a. http:/ Accessed November 2010
  19. Kuznik F, Virgone J (2009) Experimental assessment of a phase change materials for wall building use. Optimization phase change material wallboard for building use. Appl Energy 86:2038–2046. doi: 10.1016/j.apenergy.2009.01.004 CrossRefGoogle Scholar
  20. Kuznik F, Virgone J, Noel J (2008) Optimization of a phase change material wallboard for building use. Appl Therm Eng 28:1291–1298. doi: 10.1016/j.applthermaleng.2007.10.012 CrossRefGoogle Scholar
  21. Kuznik F, Virgone J, Johannes K (2011) In situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard. Renew Energy 36:1458–1462. doi: 10.1016/j.renene.2010.11.008 CrossRefGoogle Scholar
  22. Kymalainen H, Sjoberg A (2008) Flax and hemp fibers as raw materials for thermal insulations. Build Environ 43:1261–1269. doi: 10.1016/j.buildenv.2007.03.006 CrossRefGoogle Scholar
  23. McKinsey & Company (2009) Pathways to a low-carbon economy—Version 2 of the global greenhouse gas abatement cost curve. Accessed December 2010
  24. Morel J, Mesbah A, Oggero M, Walker P (2001) Building houses with local materials: means to drastically reduce the environmental impact of construction. Build Environ 36:1119–1126. doi: 10.1016/S0360-1323(00)00054-8 CrossRefGoogle Scholar
  25. OCDE (2003) Environmental sustainable building—challenges and policies, ParisGoogle Scholar
  26. Pacheco-Torgal F, Jalali S (2011) Embodied energy versus operational energy: a case study of a Portuguese 97 apartment-type building. Int J Sustain Eng (accepted)Google Scholar
  27. Papadopoulos A (2005) State of the art in thermal insulation materials and aims for future developments. Energy Build 37:77–86. doi: 10.1016/j.enbuild.2004.05.006 CrossRefGoogle Scholar
  28. Reddy B, Jagadish K (2003) Embodied energy of common and alternative building materials and technologies. Energy Build 35:129–137. doi: 10.1016/S0378-7788(01)00141-4 CrossRefGoogle Scholar
  29. Santos C, Matias L (2006) Thermal coefficients for buildings envelope. Buildings ITE 50, LNEC, LisbonGoogle Scholar
  30. Schossig P, Hening H, Gschwander S, Haussmann T (2005) Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Mater Solar Cells 89:297–306. doi: 10.1016/j.solmat.2005.01.017 CrossRefGoogle Scholar
  31. Simmler H, Brunner S (2005) Vacuum insulation panels for building application basic properties, aging mechanisms and service life. Energy Build 37:1122–1131. doi: 10.1016/j.enbuild.2005.06.015 CrossRefGoogle Scholar
  32. Szalay A (2007) What is missing from the concept of the new European building directive. Build Environ 42:1761–1769. doi: 10.1016/j.buildenv.2005.12.003 CrossRefGoogle Scholar
  33. Thormark C (2002) A low energy building in a life cycle—its embodied energy, energy need for operation and recycling potential. Build Environ 37:429–435. doi: 10.1016/S0360-1323(01)00033-6 CrossRefGoogle Scholar
  34. Thormark C (2006) The effect of material choice on the total energy need and recycling potential of a building. Build Environ 41:1019–1026. doi: 10.1016/j.buildenv.2005.04.026 CrossRefGoogle Scholar
  35. Tyagi V, Buddhi D (2007) PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev 11:1146–1166CrossRefGoogle Scholar
  36. UN (2010) Energy for a sustainable future. The Secretary-General’s Advisory Group on energy and climate change, New YorkGoogle Scholar
  37. Venkateswara R, Pajonk G, Haranath D (2001) Synthesis of hydrophobic aerogels for transparent window insulation applications. Mater Sci Technol 17:343–348. doi: 10.1179/026708301773002572 CrossRefGoogle Scholar
  38. Wellington U (2005) Table of embodied energy coefficients. Centre for Building Performance. Accessed October 2010
  39. WEO (2009) World Energy Outlook.IEA. Accessed December 2010
  40. Wittwer V (1992) Development of aerogel windows. J Non-Cryst Solids 145:233–236. doi: 10.1016/S0022-3093(05)80462-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited  2011

Authors and Affiliations

  1. 1.C-TAC Research UnitUniversity of MinhoGuimarãesPortugal
  2. 2.Department of Civil EngineeringUniversity of MinhoGuimarãesPortugal

Personalised recommendations