Advertisement

Toxicity of Construction and Building Materials

  • Fernando Pacheco Torgal
  • Said Jalali
Chapter

Abstract

To avoid the use of toxic building materials is one of the principles of sustainable construction. However, and contrary to general beliefs, current residential buildings frequently contain many toxic building materials some of which even comply with legal regulations. This paper discusses some cases of toxic building materials; it covers the materials responsible for the production of dioxins, furans, phthalates, the emission of volatile organic compounds from paints and varnishes, the toxicity of impregnating agents, materials that release toxic fumes during a fire, asbestos-based materials, radioactive materials and lead plumbing. Finally, considerations regarding leaching tests and how they can help to assess hazardous materials are made.

Keywords

Blood Lead Level Exhalation Rate Fibre Concentration Vinyl Chloride Monomer Methyl Isocyanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akira M (2010) Asbestosis: IPF or NSIP-like lesions in asbestos-exposed persons, and such independency. Japanese J Chest Dis 69:38–44Google Scholar
  2. Antonescu-Turcu A, Schapira R (2010) Parenchymal and airway diseases caused by asbestos. Curr Opin Pulmon Med 16:155–161. doi: 10.1097/MCP.0b013e328335de61 CrossRefGoogle Scholar
  3. ATSDR (2002) Toxicological profile for creosote. Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services, Public Health Sector, AtlantaGoogle Scholar
  4. Axelson O, Fredrikson M, Akerblom G, Hardell L (2002) Leukemia in childhood and adolescence and exposure to ionizing radiation in homes built from uranium-containing alum shale concrete. Epidemiology 13:146–150CrossRefGoogle Scholar
  5. Azuma K, Uchiyama I, Chiba Y, Okumura J (2009) Mesothelioma risk and environmental exposure to asbestos: past and future trends in Japan. Int J Occup Environ Health 15:166–172Google Scholar
  6. Baur X, Marek W, Ammon J (1994) Respiratory and other hazards of isocyanates. Int Arch Occup Environ Health 66:141–152. doi: 10.1007/BF00380772 CrossRefGoogle Scholar
  7. Berge B (2009) The ecology of building materials, 2nd edn. Architectural Press, OxfordGoogle Scholar
  8. Bianchi C, Giarelli L, Grandi G, Brollo A, Ramani L, Zuch C (1997) Latency periods in asbestos-related mesothelioma of the pleura. Eur J Cancer Prev 6:162–166Google Scholar
  9. Worldwatch Briefing (1998) Raw materials use and the environment. Worldwatch Institute, WashingtonGoogle Scholar
  10. Bystrzejewska-Piotrowska G, Golimowski J, Urban P (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595. doi: 10.1016/j.wasman.2009.04.001 CrossRefGoogle Scholar
  11. Canfield R, Henderson C, Cory-Slechta D, Cox C, Jusko T, Lanphear B (2003) Intellectual impairment in children with blood lead concentrations below 10 μg per deciliter. N Engl J Med 348:1517–1526CrossRefGoogle Scholar
  12. Canut M (2006) Feasibility of using waste gypsum as a building material. Master’s thesis, School of Engineering, Federal University of Minas GeraisGoogle Scholar
  13. Chen J, Rahman N, Atiya I (2010) Radon exhalation from building materials for decorative use. J Environ Radioact 101:317–322. doi: 10.1016/j.jenvrad.2010.01.005 CrossRefGoogle Scholar
  14. Chester D, Hanna E, Pickelman B, Rosenman K (2005) Asthma death after spaying polyurethane truck bedliner. Am J Indust M 48:78–84. doi: 10.1002/ajim.20183 CrossRefGoogle Scholar
  15. Dhawan A, Sharma V, Parmar D (2009) Nanomaterials: a challenge for toxicologists. Nanotoxicology 3:1–9CrossRefGoogle Scholar
  16. Donaldson K, Poland C (2009) Nanotoxicology: new insights into nanotubes. Nat Nanotechnol 4:708–710. doi: 10.1038/nnano.2009.327 CrossRefGoogle Scholar
  17. Doroudiani S, Omidian H (2010) Environmental, health and safety concerns of decorative mouldings made of expanded polystyrene in buildings. Build Environ 45:647–654. doi: 10.1016/j.buildenv.2009.08.004 CrossRefGoogle Scholar
  18. Dutrizac J, O′Reilly J, Macdonald R (1982) Roman lead plumbing: did it really contribuute to the decline and fall of the empire. CIM Bull 75:111–115Google Scholar
  19. Edlich R, Winters K, Long W (2005) Treated wood preservatives linked to aquatic damage, human illness, and death-A societal problem. J Long-Term Effects Med Implant 15:209–223. doi: 10.1615/JLongTermEffMedImplants.v15.i2.80 CrossRefGoogle Scholar
  20. EPA (1992) Potential uses of phosphogypsum and associated risks. Office of Radiation Programs, 520/1-91-029, WashingtonGoogle Scholar
  21. EURATOM (1996) Council directive 96/29 EC. European Atomic Comission, BrusselsGoogle Scholar
  22. Flores A, Ribeiro J, Neves A, Queiroz E (2004) Organochlorines: a public health problem. Environ Soc 7:111–124Google Scholar
  23. Forsyth D, Jay B (1997) Organotin leachates in drinking water from chlorinated poly(vinyl chloride) (CPVC) pipe. Appl Organomet Chem 11:551–558. doi: 10.1002/(SICI)1099-0739(199707) CrossRefGoogle Scholar
  24. Fristachi A, Xu Y, Rice G, Impellitteri C, Carlson-Lynch H, Little J (2009) Using probabilistic modeling to evaluate human exposure to organotin in drinking water transported by polyvinyl chloride pipe. Risk Anal 29:1615–1628. doi: 10.1111/j.1539-6924.2009.01307.x CrossRefGoogle Scholar
  25. Gann R, Babrauskas V, Peacock R, Hall J (1994) Fire conditions for smoke toxicity measurements. Fire Mater 18:193–199. doi: 10.1002/fam.810180306 CrossRefGoogle Scholar
  26. Grassian V, O′Shaughnessy P, Adamcakova-Dodd A, Pettibone J, Thorne P (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspec 115:397–402. doi: 10.1289/ehp.9469 CrossRefGoogle Scholar
  27. Hage J, Mulder E (2004) Preliminary assessment of three new European leaching tests. Waste Manag 24:165–172CrossRefGoogle Scholar
  28. Hall J, Harwood B (1995) Smoke or burns—which is deadlier? N Fire Prot Assoc J 38:38–43Google Scholar
  29. Hallock M, Greenley P, Diberardinis L, Kallin D (2008) Potential risks of nanomaterials and how to safe handle materials of uncertain toxicity. J Chem Health Saf 16:16–23. doi: 10.1016/j.jchas.2008.04.001 CrossRefGoogle Scholar
  30. Hansen S, Burroughs H (1999) Classifying indoor air problems. Managing indoor air quality. Fairmont Press, Georgia, pp 62–63Google Scholar
  31. Hauser R, Calafat A (2005) Phthalates and human health. Occup Environ Med 62:806–818. doi: 10.1136/oem.2004.017590 CrossRefGoogle Scholar
  32. Hayes C (2009) Plumbosolvency control. Best practice guide. IWA specialist group on metals and related substances in drinking water. Cost 637. IWA Publishing, LondonGoogle Scholar
  33. Heudorf U, Mersch-Sundermann V, Angerer J (2007) Phthalates: toxicolgy and exposure. Int J Hy Environ Health 210:623–634. doi: 10.1016/j.ijheh.2007.07.011 CrossRefGoogle Scholar
  34. Heuser V, Andrade V, Silva J, Erdtmann B (2005) Comparison of genetic damage in Brazilian footwear-workers exposed to solvent-based or water-based adhesive. Mutat Res 583:85–94. doi: 10.1016/j.mrgentox.2005.03.002 Google Scholar
  35. Hirano S (2009) A current overview of health effect research on nanoparticles. Env Health Prev Med 14:223–225. doi: 10.1007/s12199-008-0064-7 CrossRefGoogle Scholar
  36. Hoch M (2001) Organotin compounds in the environment—An overview. Appl Geochem 16:719–743. doi: 10.1016/S0883-2927(00)00067-6 CrossRefGoogle Scholar
  37. Hodge A (1981) Vitrivius, lead pipes and lead poisoning. American J Archaeol 85:486–491CrossRefGoogle Scholar
  38. IARC (1995) IARC monographs on the evaluation of carcinogenic risks to humans. World Health Organization, International Agency For Research On Cancer, LyonGoogle Scholar
  39. IARC (1997) Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. IARC monographs on the evaluation of carcinogenic risks to humans, vol 69. WHO, IARC, LyonGoogle Scholar
  40. ICRP (1990) Recommendations of the international commission on radiological protection. ICRP Publication 60, Pergamon Press, OxfordGoogle Scholar
  41. Jarvholm B, Englund A, Albin M (1999) Pleural mesothelioma in Sweden: an analysis of the incidence according to the use of asbestos. Occup Environ Med 56:110–113. doi: 10.1136/oem.56.2.110 CrossRefGoogle Scholar
  42. Khalil N, Wilson J, Talbottt E, Morrow L, Hochberg M, Hillier T, Muldoon S, Cummings S, Cauley J (2009) Association of blood lead concentrations with mortality in older women: a prospective cohort study. Environ Health 8:15. doi: 10.1186/1476-069X-8-15 CrossRefGoogle Scholar
  43. Koopman-Esseboom C, Weisglas-Kuperus N, De Ridder M, Van Der Paauw C, Tuinstra L, Sauer P (1996) Effects of polychlorinated biphenyl/dioxin exposure and feeding type on infants mental and psychomotor development. Pediatrics 97:700–706Google Scholar
  44. Kostianien R (1995) Volatile organic compounds in the indoor air of normal and sick houses. Atmos Environ 29:693–702. doi: 10.1016/1352-2310(94)00309-9 CrossRefGoogle Scholar
  45. Kovler K (2009) Radiological constraints of using building materials and industrial by-products in construction. Constr Build Mater 23:264–253. doi: 10.1016/j.conbuildmat.2007.12.010 CrossRefGoogle Scholar
  46. Kovler K, Haquin G, Manasherov V, Ne′eman E, Lavi N (2002) Natural radionuclides in building materials available in Israel. Build Environ 37:531–537. doi: 10.1016/S0360-1323(01)00048-8 CrossRefGoogle Scholar
  47. Kwok N, Lee S, Guo H, Hung W (2003) Substrate effects on VOC emissions from an interior finishing varnish. Build Environ 38:1019–1026. doi: 10.1016/S0360-1323(03)00066-0 CrossRefGoogle Scholar
  48. Labat L, Olichon D, Poupon J, Bost M, Haufroid V, Moesch C, Nicolas A, Furet Y, Goullé J, Guillard C, Le Bouill A, Pineau A (2006) Variabilité de la mesure de la plombémie pour de faibles concentrations proches du seuil de 100 μg/l: étude multicentrique. Ann Toxicol 18:297–304CrossRefGoogle Scholar
  49. Ladou J (2004) The asbestos cancer epidemic. Environ Health Perspect 112:285–290. doi: 10.1289/ehp.6704 CrossRefGoogle Scholar
  50. Lanting C, Patandin S, Fidlern V, Weisglas-Kuperus N, Sauer P, Boersma E, Touwen B (1998) Neurologic condition in 42-month-old children in relation to pre-and postnatal exposure to polychlorinated biphenyls and dioxins. Early Hum Dev 50:700–706. doi: 10.1016/S0378-3782(97)00066-2 CrossRefGoogle Scholar
  51. Lapa N, Barbosa R, Morais J, Mendes B, Méhu J, Oliveira J (2002) Ecotoxicological assessment of leachates from MSWI bottom ashes. Waste Manag 22:583–593. doi: 10.1016/S0956-053X(02)00009-0 CrossRefGoogle Scholar
  52. Levin B, Kuligowski E (2005) Toxicology of fire and smoke. In: Salem H, Katz S (eds) Inhalation toxicology, pp. 205–228 CRC Press, Boca RattonGoogle Scholar
  53. Lewin K (1996) Leaching tests for waste compliance and characterization: recent practical experiences. Sci Total Environ 178:85–94. doi: 10.1016/0048-9697(95)04800-6 CrossRefGoogle Scholar
  54. Liang H, Ho M (2007) Toxicity characteristics of commercially manufactured insulation materials for building applications in Taiwan. Constr Build Mater 21:1254–1261. doi: 10.1016/j.conbuildmat.2006.05.051 CrossRefGoogle Scholar
  55. Littorin M, Truedsson L, Welinder H (1994) Acute respiratory disorder, rhinoconjuctivitis and fever associated with the pyrolysis of polyurethane derived from diphenylmethane diisocyanate. Scand J Work Environ Health 20:216–222Google Scholar
  56. Liu A, Sun K, Yang J, Zhao D (2008) Toxicological effects of multi-wall carbon nanotubes in rats. J Nanoparticle Res 10:1303–1307. doi: 10.1007/s11051-008-9369-0 CrossRefGoogle Scholar
  57. Lovekamp-Swan T, Davis B (2003) Mechanisms of phthalate ester toxicity in the female reproductive system. Environ Health Perspect 111:139–145. doi: 10.1289/ehp.5658 CrossRefGoogle Scholar
  58. Marczynski B, Czuppom A, Hoffarth H, Marek W, Baur X (1992) DNA damage in human white blood cells after inhalation exposure to 4, 4’-methylenediphenyl diisocyanate (MDI)-case report. Toxicol Lett 60:131–138CrossRefGoogle Scholar
  59. Meeker J, Hu H, Cantonwine D, Lamadrid-Figueroa H, Calafat A, Ettinger A, Hernandez-Avila M, Loch-Caruso R, Téllez-Rojo M (2009) Urinary phthalate metabolites in relation to preterm birth in Mexico city. Environ Health Perspect 117:1587–1592. doi: 10.1289/ehp.0800522 Google Scholar
  60. Menke A, Muntner P, Batuman V, Silbergeld E, Guallar E (2006) Blood lead below 0, 48 μmol/l (10 μg/dl) and mortality among US adults. Circulation 114:1388–1394. doi: 10.1161/CIRCULATIONAHA.106.628321 CrossRefGoogle Scholar
  61. Morrell J (2002) Wood-based building components: what have we learned. Int Biodeterior 49:253–258. doi: 10.1016/S0964-8305(02)00052-5 CrossRefGoogle Scholar
  62. Nriagu J (1983) Saturnine gout among Roman aristocrats. Did lead poisoning contribute to the fall of the empire? N Engl J Med 308:660–663CrossRefGoogle Scholar
  63. Oppenhuizen A, Sijm D (1990) Bioaccumulation and biotransformation of poluchlorinated dibenzo-p-dioxins and dibenzofurans in fish. Environ Toxicol Chemistry 9:175–186Google Scholar
  64. Paauw C, Tuinstra L, Sauer P (1996) Effects of polychlorinated biphenyl/dioxin exposure and feeding type on infants mental and psychomotor development. Pediactrics 97:700–706Google Scholar
  65. Pacurari M, Castranova V, Vallyathan V (2010) Single and multi wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans. J Toxicol Environ Health 73:378–395. doi: 10.1080/15287390903486527 CrossRefGoogle Scholar
  66. Papadopoulos I (1999) Revision of the council directive on the quality of water intended for human consumption. Environmentalist 19:23–26. doi: 10.1023/A:1006580705254 CrossRefGoogle Scholar
  67. Papaefthmiou H, Gouseti O (2008) Natural radioactivity and associated radiation hazards in building materials used in Peloponnese, Greece. Radiat Meas 43:1453–1457. doi: 10.1016/j.radmeas.2008.03.032 CrossRefGoogle Scholar
  68. Pavlidou S, Koroneos A, Papastefanou C, Christofides G, Stoulos S, Vavelides M (2006) Natural radioactivity of granites as building materials. J Environ Radioact 89:48–60. doi: 10.1016/j.jenvrad.2006.03.005 CrossRefGoogle Scholar
  69. Peltonen K, Pfaffli P, Itkonen A, Kalliokoski P (1986) Determination of the presence of bisphenol-A and the absence of diglycidyl ether of bisphenol-A in the thermal degradation products of epoxy powder paint. Am Ind Hyg Assoc J 47:399–403. doi: 10.1080/15298668691389946 CrossRefGoogle Scholar
  70. Pocock S, Smith M, Baghurst P (1994) Environmental lead and children’s intelligence: a systematic review of the epidemiological evidence. Br Med J 309:1189–1197Google Scholar
  71. Poland C, Duffin R, Kinloch I, Maynard A, Wallace W, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenecity in a pilot study. Nat Nanotechnol 3:423–428. doi: 10.1038/nnano.2008.111 CrossRefGoogle Scholar
  72. Poon C, Lio K (1997) The limitation of the toxicity characteristic leaching procedure for evaluating cement-based stabilised/solidified waste forms. Waste Manag 17:15–23. doi: 10.1016/S0956-053X(97)00030-5 CrossRefGoogle Scholar
  73. Pruszinski A (1999) Review of the landfill disposal risks and the potential for recovery and recycling of preservative treated timber. Environ Prot Agency Rep, EPAGoogle Scholar
  74. Rabin R (2008) The lead industry and lead water pipes “A modest campaign”. Am J Public Health 98:1584–1592. doi: 10.2105/AJPH.2007.113555 CrossRefGoogle Scholar
  75. Rahman R (2007) PVC pipe and fittings: underground solutions for water and sewer systems in North America. 2nd Brazilian PVC Congress, Sao PauloGoogle Scholar
  76. Rihanek S (1971) Radioactivity of phosphate plaster and phosphate gypsum. Tonind-Ztg 95:264–270Google Scholar
  77. Sadiki A, Williams D (1996) Speciation of organotin and organolead compounds in drinking water by gas chromatography-atomic emission spectrometry. Chemosphere 32:1983–1992. doi: 10.1016/0045-6535(96)00097-5 CrossRefGoogle Scholar
  78. Sadiki A, Williams D (1999) A study on organotin levels in Canadian drinking water distributed through PVC pipes. Chemosphere 38:1541–1548. doi: 10.1016/S0045-6535(98)00374-9 CrossRefGoogle Scholar
  79. Sadiki A, Williams D, Carrier R, Thomas B (1996) Pilot study on the contamination of drinking water by organotin compounds from PVC materials. Chemosphere 32:2389–2398. doi: 10.1016/0045-6535(96)00134-8 CrossRefGoogle Scholar
  80. Salasar C (2007) Study on the emission of volatile organic compounds VOCs in house paints based on solvents based and in water. Master thesis, Londrina State UniversityGoogle Scholar
  81. Samfield M (1992) Indoor air quality data base for organic compounds. EPA-600/13Google Scholar
  82. Satyanand T (2008) Aftermath of the Bhopal accident. Lancet 371:1900CrossRefGoogle Scholar
  83. Silverstein M, Welch L, Lemen R (2009) Developments in asbestos cancer risk assessment. Am J Indust Med 52:850–858CrossRefGoogle Scholar
  84. Singh N, Manshian B, Jenkins G, Griffiths S, Williams P, Maffeis T, Wright C, Doak S (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914. doi: 10.1016/j.biomaterials.2009.04.009 CrossRefGoogle Scholar
  85. Skarping G, Dalene M, Svensson B, Littorin M, Akesson B, Welinder H, Skerfving S (1996) Biomarkers of exposure, antibodies, and respiratory symptoms in workers heating polyurethane glue. Occup Environ Med 53:180–187CrossRefGoogle Scholar
  86. Smith P (2008) Risks to human health and estuarine ecology posed by pulling out creosote-treated timber on oyster farms. Aquatic Toxicol 86:287–298. doi: 10.1016/j.aquatox.2007.11.009 CrossRefGoogle Scholar
  87. Sterling D (1985) Indoor air and human healths. In: Gammage R, Kaye S, Jacobs V (eds) Volatile organic compounds in indoor air: an overview of sources, concentrations, and health effects. Lewis Publishers, USAGoogle Scholar
  88. Stern B, Lagos G (2008) Are there health risks from the migration of chemical substances from plastic pipes into drinking water? A review. Hum Ecol Risk Assess 14:753–779. doi: 10.1080/10807030802235219 CrossRefGoogle Scholar
  89. Swan S (2008) Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res 108:177–184. doi: 10.1016/j.envres.2008.08.007 CrossRefGoogle Scholar
  90. Tararbit K, Carré N, Garnier R (2009) Occurrence of lead poisoning during follow-up of children at risk wih initial screening lead blood levels below 100 μg/l. Revue d′Epidemiologie et de Sante Publique 57:249–255CrossRefGoogle Scholar
  91. Thierfelder T, Sandstrom E (2008) The creosote content of used railway crossties as compared with European stipulations for hazardous waste. Sci Total Environ 24:106–112. doi: 10.1016/j.scitotenv.2008.04.035 Google Scholar
  92. Thorton J (2000) Pandora’s poison: chlorine, health, and a new environmental strategy. MIT Press, CambridgeGoogle Scholar
  93. Thorton J (2002) Environmental impacts of polyvinyl chloride (PVC) building materials. University of Oregon, CambridgeGoogle Scholar
  94. Tillitt D, Kubiak T, Ankley G, Giesy J (1993) Dioxin-like toxic potency in Forster′s tern eggs form Green Bay, Lake Michigan, North America. Chemosphere 26:2079–2084. doi: 10.1016/0045-6535(93)90033-2 CrossRefGoogle Scholar
  95. Troesken W (2006) The great lead water pipe disaster. MIT Press, CambridgeGoogle Scholar
  96. Tsai W (2006) Human health risk on environmental exposure to bisphenol-A: a review. J Environ Sci Health-Part C Environ Carcinog Ecotoxicol Rev 24:225–255. doi: 10.1080/10590500600936482 Google Scholar
  97. Tyshenko M, Krewski D (2008) A risk management framework for the regulation of nanomaterials. Int J Nanotechnol 5:143–160. doi: 10.1504/IJNT.2008.016553 CrossRefGoogle Scholar
  98. UNCHS (1997) Building materials and health. HS/459/97E. Habitat, NairobiGoogle Scholar
  99. Vale P, Rycroft J (1988) Occupational irritant contact dermatitis from fiberboard containing urea–formaldehyde resin. Contact Dermat 19:62. doi: 10.1111/j.1600-0536.1988.tb02871.x CrossRefGoogle Scholar
  100. Van Der Sloot H (1996) Developments in evaluating environmental impact from utilization of bulk inert wastes using laboratory leaching tests and field verification. Waste Manag 16:65–81. doi: 10.1016/S0956-053X(96)00028-1 CrossRefGoogle Scholar
  101. Van Der Sloot H, Heasman L, Quevauviller P (1997) Harmonization of leaching/extraction tests. Elsevier, AmsterdamGoogle Scholar
  102. Varma R, Mulay S (2006) The Bhopal accident and methyl isocyanate toxicity. Toxicol Organophosphate Carbonate Compd 7:79–88CrossRefGoogle Scholar
  103. Walker N, Bucher J (2009) A 21st century paradigm for evaluating the health hazards of nanoscale materials. Toxicol Sci 110:251–254CrossRefGoogle Scholar
  104. Wilbur S, Harris M, Cllure P, Spoo W (1999) Toxicology profile of formaldehyde. US Department of Health and Service DHHS, Public Health http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=220&tid=39. Accessed 10 September 2010
  105. Wilhelm M, Dieter H (2003) Lead exposure via drinking water-unnecessary and avoidable. Umweltmedizin in Forschung und Praxis 8:239–241Google Scholar
  106. Wolff M, Engel S, Berkowitz G, Ye X, Silva M, Zhu C (2008) Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect 116:1092–1097. doi: 10.1289/ehp.11007 CrossRefGoogle Scholar
  107. Wu C (2001) Discussion on fire safety factors from case studies of building fires. Master thesis, University of TaiwanGoogle Scholar
  108. Wu W, Roberts R, Chung Y, Ernest W, Havlicek S (1989) The extraction of organotin compounds from polyvinyl chloride pipe. Arch Environ Contam Toxicol 18:839–843. doi: 10.1007/BF01160298 CrossRefGoogle Scholar
  109. Yu Y, Zhang Q, Mu Q, Zhang B, Yan B (2008) Exploring the immunotoxicity of carbon nanotubes. Nanoscale Res Lett 3:271–277. doi: 10.1007/s11671-008-9153-1 CrossRefGoogle Scholar
  110. Zhang L, Steinmaus C, Eastmond D, Xin X, Smith M (2008) Formaldehyde exposure and leukemia: a new meta-analysis and potential mechanisms. Mutat Res 681:150–168. doi: 10.1016/j.mrrev.2008.07.002 Google Scholar
  111. Zietz B, Lab J, Dunkelberg H, Suchenwirth R (2009) Lead pollution of drinking water in lower saxony from corrosion of pipe materials. Gesundheitswesen 71:265–274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited  2011

Authors and Affiliations

  1. 1.C-TAC Research UnitUniversity of MinhoGuimarãesPortugal
  2. 2.Department of Civil EngineeringUniversity of MinhoGuimarãesPortugal

Personalised recommendations