Skip to main content

A Review of Kernel Methods in ECG Signal Classification

  • Chapter
  • First Online:
ECG Signal Processing, Classification and Interpretation

Abstract

Kernel methods have been shown to be effective in the analysis of electrocardiogram (ECG) signals. These techniques provide a consistent and well-founded theoretical framework for developing nonlinear algorithms. Kernel methods exhibit useful properties when applied to challenging design scenarios, such as: (1) when dealing with low number of (potentially high dimensional) training samples; (2) in the presence of heterogenous multimodalities; and (3) with different noise sources in the data. These characteristics are particularly appropriate for biomedical signal processing and analysis, and hence, the widespread of these techniques in biomedical signal processing in general, and in ECG data analysis in particular. Specifically, kernel methods have improved the performance of both parametric linear methods and neural networks in applications such as cardiac beat detection in 12-lead ECG, detection of electrocardiographic changes in partial epileptic patients, automatic identification of reliable heart rates, detection of obstructive sleep apnea, automatic seizure detection in the newborn, or cardiac sound murmurs classification, just to name a few. This chapter provides a survey of applications of kernel methods in the context of ECG signal analysis. The chapter summarizes the theory of kernel methods, and studies the different application domains. Noting that the vast majority of applications in the literature reduce to the use of the standard support vector machine, we pay special attention to other kernel machines available in the literature that may be of interest for practitioners. Finally, we foresee some other future research lines in the development of specific kernel methods to deal with the data peculiarities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abboud, M.F., Linkens, D.A., Mahfouf, M., Dounias, G.: Survey on the use of smart and adaptive engineering systems in medicine. Artif. Intell. Med. 26, 179–209 (2002)

    Article  Google Scholar 

  • Abreu-Lima, C., de Sa, J.P.: Automatic classifiers for the interpretation of electrocardiograms. Rev. Port. Cardiol. 17, 415–28 (1998)

    Google Scholar 

  • Alonso-Atienza, F., Rosado-Muñoz, A., Rojo-Álvarez, J.L., Camps-Valls, G.: Learning the relevant features of ventricular fibrillation from automatic detection algorithms. In: Hines, E., Martínez-Ramón, M., Pardo, M., Llobet, E., Leeson, M., Iliescu, D., J.Y. (eds.) Intelligent Systems: Techniques and Applications, pp. 505–534. Shaker Publishing, Maastrich, Netherlands (2008)

    Google Scholar 

  • Brugada, P., Brugada, J., Mont, L., Smeets, J., Andries, E.W.: A new approach to the differential diagnosis of a regular tachycardia with a wide QRS complex. Circulation 83, 1649–59 (1991)

    Google Scholar 

  • Camps-Valls, G., Guerrero-Martínez, J.F.: Neural networks in ECG classification: what is next in adaptive systems? In: Kamruzzaman, J., Begg, R.K., Sarker, R.A., (eds.) Neural Networks in Healthcare: Potential and Challenges, pp. 81–104. http://www.idea-group.com/books/details.asp?ID=5529. Idea Group Publishing, Hershey (2006). ISBN: 1-59140-848-2

  • Carrault, G., Cordier, M.O., Quiniou, R., Wang, F.: Temporal abstraction and inductive logic programming for arrhythmia recognition from electrocardiograms. Artif. Intell. Med. 28, 231–63 (2003)

    Article  Google Scholar 

  • Dybowski, R.: Neural computation in medicine: perspectives and prospects. In: Proceedings of the Artificial Neural Networks in Medicine and Biology Conference, pp. 26–36. Springer, Göteborg, Sweden (2000)

    Google Scholar 

  • Einthoven: Un Nouveau galvanométre. Arch Néerland Sci exactes naturelles, Serie 2, 6, 625–633 (1901)

    Google Scholar 

  • Exarchos, T., Tsipouras, M., Exarchos, C., Papaloukas, C., Fotiadis, D., Michalis, L.: A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree. Artif. Intell. Med. 40, 187–200 (2007)

    Article  Google Scholar 

  • Golub, G.H., Van Loan, C.F.: Matrix Computations (Johns Hopkins Studies in Mathematical Sciences). The Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  • Graja, S., Boucher, J.: SVM classification of patients prone to atrial fibrillation. In: IEEE International Workshop on Intelligent Signal Processing, pp. 370–374. Faro (2005)

    Google Scholar 

  • Itchhaporia, D., Snow, P.B., Almassy, R.J., Oetgen, W.J.: Artificial neural networks: current status in cardiovascular medicine. J. Am. Coll. Cardiol. 28, 515–21 (1996)

    Article  Google Scholar 

  • Ji, S.Y., Chen, W., Ward, K., Rickards, C., Ryan, K., Convertino, V., Najarian, K.: Wavelet based analysis of physiological signals for prediction of severity of hemorrhagic shock. In: International Conference on Complex Medical Engineering, pp. 1–6. ICME, IEEE press Tempe, AZ, USA (2009)

    Google Scholar 

  • Joshi, A., Chandran, S., Jayaraman, V., Kulkarni, B.: Hybrid SVM for multiclass arrhythmia classification. In: IEEE International Conference on Bioinformatics and Biomedicine, pp.287–290. IEEE Computer Society, Piscataway (2009)

    Google Scholar 

  • Kamousi, B., Tewfik, A., Lin, B., Al-Ahmad, A., Hsia, H., Zei, P., Wang, P.: A new approach for icd rhythm classification based on support vector machines. In: International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2478–2481. IEEE Computer Society, Minneapolis (2009)

    Google Scholar 

  • Kampouraki, A., Manis, G., Nikou, C.: Heartbeat time series classification with support vector machines. IEEE Trans. Inf. Technol. Biomed. 13, 512–518 (2009)

    Article  Google Scholar 

  • Khandoker, A., Kimura, Y., Palaniswami, M.: Automated identification of abnormal fetuses using fetal ECG and Doppler ultrasound signals. In: Computers in Cardiology, pp. 709–712. IEEE, Piscataway (2009a)

    Google Scholar 

  • Khandoker, A., Palaniswami, M., Karmakar, C.: Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings. IEEE Trans. Inf. Technol. Biomed. 13, 37–48 (2009b)

    Article  Google Scholar 

  • Kilpatrick, D., Johnston, P.: Origin of the electrocardiogram. IEEE Eng. Med. Biol. Mag. 13, 479–486 (1994)

    Article  Google Scholar 

  • Konttila, T., Stenroos, M., Vaananen, H., Hanninen, H., Lindholm, M., Tierala, I., Katila, T.: Support vector classification of acute myocardial ischemia with reduced sets of body surface potential map electrodes. In: Computers in Cardiology, pp. 869–872. IEEE, Piscataway (2005)

    Google Scholar 

  • Kostka, P., Tkacz, E.: Feature extraction for improving the support vector machine biomedical data classifier performance. In: Information Technology and Applications in Biomedicine, 2008. International Conference on ITAB 2008. 362–365. Shenzhen (2008)

    Google Scholar 

  • Kumaravel, N., Rajesh, J., Nithiyanandam, N.: Equivalent tree representation of electrocardiogram using genetic algorithm. Biomed. Sci. Instrum. 33, 573–578 (1997)

    Google Scholar 

  • Le Blanc, R.: Quantitative analysis of cardiac arrhythmias. crc: Critical review in biomedical engineeering. In: MIT-BIH Database Distribution. 2003. http://ecg.mit.edu/ Mitchell, T.M., Machine Learning. pp. 14–1 (1986)

  • Lisboa, P.J., Vellido, A., Wong, H.: Bias reduction in skewed binary classification with Bayesian neural networks. Neural Netw. 13, 407–410 (2000)

    Article  Google Scholar 

  • Mahalingam, N., Kumar, D.: Neural networks for signal processing applications: ECG classification. Austral. Phys. Eng. Sci. Med. 20, 147–151 (1997)

    Google Scholar 

  • Mehta, S., Lingayat, N.: Detection of T-waves in 12-lead electrocardiogram. In: International Conference on Computational Intelligence and Multimedia Applications, 2007, vol. 2. 512–516. IEEE Computer Society, Washington (2007)

    Google Scholar 

  • Mehta, S., Lingayat, N.: SVM-based algorithm for recognition of QRS complexes in electrocardiogram. IRBM 29, 310–317 (2008a)

    Article  Google Scholar 

  • Mehta, S., Lingayat, N.: Combined entropy based method for detection of QRS complexes in 12-lead electrocardiogram using SVM. Comput. Biol. Med. 38, 138–145 (2008b)

    Article  Google Scholar 

  • Mehta, S., Lingayat, N.: Development of SVM based classification techniques for the delineation of wave components in 12-lead electrocardiogram. Biomed. Signal Process. Control 3, 341–349 (2008c)

    Article  Google Scholar 

  • Melgani, F., Bazi, Y.: Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans. Inf. Technol. Biomed. 12, 667–677 (2008)

    Article  Google Scholar 

  • Miller, A.S., Blott, B.H., Hames, T.K.: Review of neural network applications in medical imaging and signal processing. Med. Biol. Eng. Comput. 30, 449–464 (1992)

    Article  Google Scholar 

  • Miyaji, M., Kawanaka, H., Oguri, K.: Driver’s cognitive distraction detection using physiological features by the adaboost. In: International IEEE Conference on Intelligent Transportation Systems, pp. 1–6. IEEE, St. Louis (2009)

    Google Scholar 

  • Mora, F., Passariello, G., Carrault, G., Le Pichon, J.P.: Intelligent patient monitoring and management systems: a review. IEEE Eng. Med. Biol. Mag. 12, 23–33 (1993)

    Article  Google Scholar 

  • Nugent, C.D., Webb, J.A.C., Black, N.D., Wright, G.T.H., McIntyre, M.: An intelligent framework for the classification of the 12-lead ECG. Artif. Intell. Med. 16, 205–222 (1999)

    Article  Google Scholar 

  • Osowski, S., Hoai, L.T., Markiewicz, T.: Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans. Biomed. Eng. 51, 582–589 (2004)

    Article  Google Scholar 

  • Patangay, A., Vemuri, P., Tewfik, A.: Monitoring of obstructive sleep apnea in heart failure patients. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1043–1046. IEEE, Lyon (2007)

    Google Scholar 

  • Reed, M.C., Simon, B.: Functional Analysis. Volume I of Methods of Modern Mathematical Physics. Academic, New York (1980)

    MATH  Google Scholar 

  • Ribeiro, B., Marques, A., Henriques, J., Antunes, M.: Premature ventricular beat detection by using spectral clustering methods. In: Computers in Cardiology, 2007, pp. 149–152. IEEE, Piscataway (2007)

    Google Scholar 

  • Ribeiro, B., Henirques, J., Marques, A., Antunes, M.: Manifold learning for premature ventricular contraction detection. In: Computers in Cardiology, pp. 917–920. IEEE, Piscataway (2008)

    Google Scholar 

  • Rojo-Alvarez, J.L., Arenal-Maiz, A., Artes-Rodriguez, A.: Discriminating between supraventricular and ventricular tachycardias from egm onset analysis. IEEE Eng. Med. Biol. Mag. 21, 16–26 (2002a)

    Article  Google Scholar 

  • Rojo-Alvarez, J.L., Arenal-Maiz, A., Artes-Rodriguez, A.: Support vector black-box interpretation in ventricular arrhythmia discrimination. IEEE Eng. Med. Biol. Mag. 21, 27–35 (2002b)

    Article  Google Scholar 

  • Schölkopf, B., Smola, A.: Learning with Kernels – Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, Cambridge, MA (2002)

    Google Scholar 

  • Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems (NIPS), Vol. 12. MIT Press, Cambridge, MA, (1999)

    Google Scholar 

  • Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. J. Neural Comput. 2, 1207–1245 (2000)

    Article  Google Scholar 

  • Sepúlveda-Sanchis, J., Camps-Valls, G., Soria-Olivas, E., Salcedo-Sanz, S., Bousoño-Calzón, C., Sanz-Romero, G., Marrugat de la Iglesia, J.: Support vector machines and genetic algorithms for detecting unstable angina. In: Computers in Cardiology, Vol. 29, pp. 261–265. IEEE, Piscataway (2002)

    Google Scholar 

  • Tax, D., Duin, R.P.: Support vector domain description. Pattern Recognit. Lett. 20, 1191–1199 (1999)

    Article  Google Scholar 

  • Ubeyli, E.D.: ECG beats classification using multiclass support vector machines with error correcting output codes. Digit. Signal Process. 17, 675–684 (2007)

    Article  Google Scholar 

  • Uyar, A., Gurgen, F.: Arrhythmia classification using serial fusion of support vector machines and logistic regression. In: IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems, Technology and Applications, pp. 560–565. IEEE, Piscataway (2007)

    Google Scholar 

  • Watrous, R., Towell, G.: A patient-adaptive neural network ECG patient monitoring algorithm. In: Computers in Cardiology 1995. pp. 229–232. IEEE Computer Society, Long Beach (1995)

    Google Scholar 

  • Yi-Zhi, W., Hong-An, X., Yong-Sheng, D., Jin-Lan, S., Bo-Hui, Z.: SVM based chronic fatigue syndrome evaluation for intelligent garment. In: International Conference on Bioinformatics and Biomedical Engineering. pp. 1947–1950. IEEE Xplore, Piscataway (2008)

    Google Scholar 

  • Zellmer, E., Shang, F., Zhang, A.: Highly accurate ECG beat classification based on continuous wavelet transformation and multiple support vector machine classifiers. In: International Conference on Biomedical Engineering and Informatics. pp. 1–5. IEEE, Piscataway (2009)

    Google Scholar 

  • Zhao, Q., Zhang, L.: ECG feature extraction and classification using wavelet transform and support vector machines. In: International Conference on Neural Networks and Brain, Vol. 2, pp. 1089–1092. IEEE, Piscataway (2005)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by projects CICYT-FEDER TEC2009-13696, AYA2008-05965-C04-03, CSD2007-00018, TEC2009-12098, and TEC2010-19263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Rojo-Álvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Rojo-Álvarez, J.L., Camps-Valls, G., Caamaño-Fernández, A.J., Guerrero-Martínez, J.F. (2012). A Review of Kernel Methods in ECG Signal Classification. In: Gacek, A., Pedrycz, W. (eds) ECG Signal Processing, Classification and Interpretation. Springer, London. https://doi.org/10.1007/978-0-85729-868-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-868-3_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-867-6

  • Online ISBN: 978-0-85729-868-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics