An Introduction to the Use of Evolutionary Computation Techniques for Dealing with ECG Signals

  • Guillermo Leguizamón
  • Carlos A. Coello


Evolutionary Computation (EC) has become one of the most developed and successful computational intelligence techniques used for solving real-world problems from different application areas, including engineering, machine learning, signal processing, and data mining, among many others. It is indeed particularly worth noticing the success of the use of EC techniques for dealing with problems that involve the processing, classification, and interpretation of different sources of signals. From them, the treatment of ECG signals represents a challenge for the scientific community since such a problem has not only a high academic impact, but an important social impact, as well. In this chapter we present an introduction to basic EC concepts, including the description (under a unified perspective) of the most representative algorithms within this area. Furthermore, the chapter is aimed to provide the reader with the fundamentals of the most representative EC-based methodologies and other well-known bio-inspired metaheuristics that have been adopted for dealing with the treatment of ECG signals. Additionally, some areas for future research are also identified towards the end of the chapter.


Particle Swarm Optimization Discrete Wavelet Transform Radial Basis Function Neural Network Artificial Immune System Evolutionary Computation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The second author acknowledges support from CONACyT project no. 103570.


  1. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York (1996)MATHGoogle Scholar
  2. Bäck, T., Fogel, D., Michalewicz, Z. (eds.): Evolutionary Computation 1: Basic Algorithms and Operators, vol. 1, 1st edn. Institute of Physics Publishing, Bristol (2000)Google Scholar
  3. Begg, R., Lai, D. T.H., Palaniswami, M.: Computational Intelligence in Biomedical Engineering. CRC Press, Inc., Boca Raton (2008)MATHGoogle Scholar
  4. Bereta, M., Burczyński, T.: Comparing binary and real-valued coding in hybrid immune algorithm for feature selection and classification of ECG signals. Eng. Appl. Artif. Intell. 20(5), 571–585 (2007). doi:
  5. Bursa, M., Lhotska, L.: Automated classification tree evolution through hybrid metaheuristics. In: Corchado, E., Corchado, J., Abraham, A. (eds.) Innovations in Hybrid Intelligent Systems. Advances in Soft Computing, vol. 44, pp. 191–198. Springer, Berlin/Heidelberg (2007)CrossRefGoogle Scholar
  6. Bursa, M., Lhotska, L.: Ant colony cooperative strategy in electrocardiogram and electroencephalogram data clustering. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). Studies in Computational Intelligence, vol. 129, pp. 323–333. Springer, Berlin/Heidelberg (2008a)CrossRefGoogle Scholar
  7. Bursa, M., Lhotska, L.: Nature Inspired Concepts in the Electrocardiogram Interpretation Process. In: Computers in Cardiology, 2008, pp. 241–244. IEEE press, Piscataway, New Jersey, USA (2008b)Google Scholar
  8. Chen, Y., Yang, B., Dong, J.: Time-series prediction using a local linear wavelet neural network. Neurocomput. 69(4–6), 449–465 (2006). doi:
  9. Chua, T.W., Tan, W.W.: GA optimisation of Non-Singleton Fuzzy logic system for ECG classification. In: IEEE Congress on Evolutionary Computation, 2007 (CEC 2007), pp. 1677–1684. (2007). doi:10.1109/CEC.2007.4424675Google Scholar
  10. De Jong, K.: Evolutionary Computation: A Unified Approach. Complex Adaptive Systems: A Bradford Book. MIT Press, Cambridge, MA (2006)Google Scholar
  11. de Toro, F., Ros, E., Mota, S., Ortega, J.: Evolutionary algorithms for multiobjective and multimodal optimization of diagnostic schemes. IEEE Trans. Biomed. Eng. 53(2), 178–189 (2006)CrossRefGoogle Scholar
  12. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003). ISBN 3-540-40184-9MATHGoogle Scholar
  13. Fogel, D.B.: Evolutionary Computation. Toward a New Philosophy of Machine Intelligence. The Institute of Electrical and Electronic Engineers, New York (1995)Google Scholar
  14. Fogel, L.J.: Artificial Intelligence through Simulated Evolution. Wiley, New York (1966)MATHGoogle Scholar
  15. Frank, A., Asuncion, A.: UCI Machine Learning Repository. (2010). Accessed 1 Sept 2010
  16. Friesen, G., Jannett, T., Jadallah, M., Yates, S., Quint, S., Nagle, H.: A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. 37(1), 85–98 (1990). doi:10.1109/10.43620CrossRefGoogle Scholar
  17. Gacek, A., Pedrycz, W.: A genetic segmentation of ECG signals. IEEE Trans. Biomed. Eng. 50(10), 1203–1208 (2003). doi:10.1109/TBME.2003.816074CrossRefGoogle Scholar
  18. Glover, F.W., Kochenberger, G.A. (eds.): Handbook of Metaheuristics. Kluwer Academic Publishers, Norwell, Massachusetts, USA (2003)MATHGoogle Scholar
  19. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), (2000)Google Scholar
  20. Holland, J.H.: Concerning efficient adaptive systems. In: Yovits, M.C., Jacobi, G.T., Goldstein, G.D. (eds.) Self-Organizing Systems – 1962, pp. 215–230. Spartan Books, Washington, D.C. (1962)Google Scholar
  21. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. University of Michigan Press/MIT Press, Cambridge, MA (1992)Google Scholar
  22. Jatoth, R., Anoop, S.S.V.K.K., Prabhu, C.M.: Biologically inspired evolutionary computing tools for the extraction of fetal electrocardiogram. WSEAS Trans. Sig. Proc. 5, 106–115 (2009).
  23. Jiang, W., Kong, S.G., Peterson, G.D.: ECG signal classification using block-based neural networks. In: Proceedings of IEEE International Joint Conference on Neural Networks, 2005. IJCNN ’05, vol. 1, pp. 326–331. IEEE Operations Center, Piscataway (2005). doi:10.1109/IJCNN.2005.1555851Google Scholar
  24. Karpagachelvi, S., Arthanari, M., Sivakumar, M.: ECG Feature Extraction Techniques – A Survey Approach. Int. J. Comput. Sci. Inf. Secur. 8(1) (2010)Google Scholar
  25. Korürek, M., Doĝan, B.: ECG beat classification using particle swarm optimization and radial basis function neural network. Expert Syst. Appl. 37(12), (2010). doi:10.1016/j. eswa.2010.04.087Google Scholar
  26. Korürek, M., Nizam, A.: Clustering MIT-BIH arrhythmias with ant colony optimization using time domain and PCA compressed wavelet coefficients. Digit. Signal Process. 20(4), 1050–1060 (2010)CrossRefGoogle Scholar
  27. Koza, J.R.: Genetic Programming. On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge, MA (1992)MATHGoogle Scholar
  28. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. The MIT Press, Cambridge, MA (1994)MATHGoogle Scholar
  29. Laguna, P., Sörnmo, L.: Editorial on ‘Signal processing in vital rhythms and signs’. Trans. R. Soc. A 367, 207–211 (2009)CrossRefGoogle Scholar
  30. Michalewicz, Z., Fogel, D.: How to Solve It: Modern Heuristics, 2nd Revised and Extended edn. Springer, Berlin (2004). ISBN 3-540-22494-7Google Scholar
  31. Nasiri, J., Naghibzadeh, M., Yazdi, H., Naghibzadeh, B.: ECG arrhythmia classification with support vector machines and genetic algorithm. In: Third UKSim European Symposium on Computer Modeling and Simulation, 2009. EMS ’09, pp. 187–192. IEEE Computer Society, Los Alamitos (2009a). doi:10.1109/EMS.2009.39Google Scholar
  32. Nasiri, J.A., Sabzekar, M., Yazdi, H.S., Naghibzadeh, M., Naghibzadeh, B.: Intelligent arrhythmia detection using genetic algorithm and emphatic SVM (ESVM). In: Third UKSim European Symposium on Computer Modeling and Simulation, 2009. EMS ’09, pp. 112–117. IEEE Computer Society, Los Alamitos (2009b). doi:10.1109/EMS.2009.116Google Scholar
  33. PhysioBank: CinC challenge 2001 data sets: The PAF prediction challenge database. (2001). Accessed 1 Sept 2010
  34. Poungponsriand, S., Yu, X.: Electrocardiogram (ECG) signal modeling and noise reduction using wavelet neural networks. In: IEEE International Conference on Automation and Logistics, 2009. ICAL ’09, pp. 394–398. IEEE, Piscataway (2009). doi:10.1109/ICAL. 2009.5262892Google Scholar
  35. Schwefel, H.-P.: Kybernetische evolution als strategie der experimentellen forschung in der strömungstechnik. Dipl. -Ing. thesis (1965). (in German)Google Scholar
  36. Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley Interscience, New York (1995)Google Scholar
  37. Sörnmo, L., Laguna, P.: Electrocardiogram (ECG) signal processing. In: Akay, M. (ed.) Wiley Encyclopedia of Biomedical Engineering, vol. 2, pp. 1298–1313. Wiley, Hoboken (2006)Google Scholar
  38. Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009)MATHGoogle Scholar
  39. Wiggins, M., Saad, A., Litt, B., Vachtsevanos, G.: Genetic algorithm-evolved Bayesian network classifier for medical applications. In: Tiwari, A., Roy, R., Knowles, J., Avineri, E., Dahal K. (eds.) Applications of Soft Computing. Advances in Soft Computing, vol. 36, pp. 143–152. Springer, Berlin/Heidelberg (2006). doi: {\url{}}. 10.1007/978-3-540-36266-1_14Google Scholar
  40. Wiggins, M., Saad, A., Litt, B., Vachtsevanos, G.: Evolving a Bayesian classifier for ECG-based age classification in medical applications. Appl. Soft Comput. 8(1), 599–608 (2008). doi: {\url{}}Google Scholar
  41. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Departmento de ComputaciónUMI LAFMIA 3175 CNRS at CINVESTAV-IPNMéxicoMéxico
  2. 2.LIDIC - Universidad Nacional de San LuisSan LuisArgentina
  3. 3.Departamento de ComputaciónCINVESTAV-IPN (Evolutionary Computation Group)MéxicoMéxico
  4. 4.UMI LAFMIA 3175 CNRS at CINVESTAV-IPNMéxicoMéxico

Personalised recommendations