An Introduction to ECG Signal Processing and Analysis

  • Adam Gacek


ECGs are important biomedical signals, which are reflective of an electric activity of the heart. They form a subject of intensive research for over 100 years. ECG signals are one of the best-understood signals being at the same time an important source of diagnostic information. Because of this, in the recent years there has been a steady and intensive research with intent of developing efficient and effective methods of processing and analysis of ECG signals with emphasis on the discovery of essential and novel diagnostic information.This chapter offers a comprehensive overview of main problems concerning analysis and signal processing in ECG systems. Here the systems are meant in a broad sense embracing monitoring, diagnostic and therapeutic systems, whose functioning relies in one way or another on the analysis of electrocardiograms. In general we will be referring to them as ECG systems. An analysis of ECG signals requires their preprocessing and a suitable representation so that depending upon the nature of the ECG system, it helps reveal the required diagnostic information.The chapter is arranged into three parts. In the first one, we focus on the essentials of ECG signals, its characteristic features, and the very nature of the associated diagnostic information. In the second part, we elaborate on a sequence of phases of ECG signal processing, and analysis as they appear in ECG systems. Finally, in the third part, we offer a description of essential ECG tests.


Heart Rate Variability Information Granulation Heart Muscle Cell Depolarization Wave Ventricular Late Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aaronson, P.I., Ward, J.P., Wiener C.M.: The Cardiovascular System at a Glance, Blackwell Publishing Ltd. (2004)Google Scholar
  2. Acharya, U.R., Joseph, K.P., Kannathal, N., Lim, C.M., Suri, J.S.: Heart rate variability: a review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006)CrossRefGoogle Scholar
  3. Acharya, U.R., Suri, J.S., Spaan, J.A.E., Krishan,S.M.: Advances in Cardiac Signal Processing. Springer, Berlin (2007)MATHCrossRefGoogle Scholar
  4. Afonso, V.X., Tompkins, W.J., Nguyen, T.Q., Luo, S.: ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46(2), 192–202 (1999)CrossRefGoogle Scholar
  5. Ahmed, N., Milne, P.I.: Electrocardiographic data compression via orthogonal transforms. IEEE Trans. Biomed. Eng. BME-22, 484–487 (1975)Google Scholar
  6. Alesanco, A., García, J.: Automatic real-time ECG coding methodology guaranteeing signal interpretation quality. IEEE Trans. Biomed. Eng. 55(11), 2519–2527 (2008)CrossRefGoogle Scholar
  7. Almeida, R., Pueyo, E., Martínez, J.P., Rocha, A.P., Laguna, P.: Quantification of the QT variability related to HRV: robustness study facing automatic delineation and noise on the ECG. Comput. Cardiol. 31, 769–772 (2004)CrossRefGoogle Scholar
  8. Almeida, R., Gouveia, S., Rocha, A.P., Pueyo, E., Martínez, J.P., Laguna, P.: QT variability and HRV interactions in ECG: quantification and reliability. IEEE Trans. Biomed. Eng. 53(7), 1317–1329 (2006)CrossRefGoogle Scholar
  9. Bailon, R., Sornmo, L., Laguna, P.: A robust method for ECG-based estimation of the respiratory frequency during stress testing. IEEE Trans. Biomed. Eng. 53(7), 1273–1285 (2006)CrossRefGoogle Scholar
  10. Barro, S., Fernandez-Delgado, M., Regueiro, J.A., Sanchez, E.: Classifying multichannel ECG patterns with an adaptive neural network. IEEE Eng. Med. Biol. Mag. 17(1), 45–55 (1998)CrossRefGoogle Scholar
  11. Berbari, E.J., Bock, E.A., Cházaro, A.C., Sun, X., Sörnmo, L.: High-resolution analysis of ambulatory electrocardiograms to detect possible mechanism of premature ventircular beats. IEEE Trans. Biomed. Eng. 52(4), 593–599 (2005)CrossRefGoogle Scholar
  12. Bortolan, G., Pedrycz, W.: Fuzzy descriptive models: an interactive framework of information granulation. IEEE Trans. Fuzzy Syst. 10(6), 743–755 (2002a)CrossRefGoogle Scholar
  13. Bortolan, G., Pedrycz,W.: An interactive framework for an analysis of ECG signals. Artif. Intell. Med. 24, 109–132 (2002b)CrossRefGoogle Scholar
  14. Botter,E., Nascimento, C.L., Yoneyama, T.: A neural network with asymmetric basis function for feature extraction of ECG P waves. IEEE Trans. Neural Netw. 12(5), 1252–1255 (2001)CrossRefGoogle Scholar
  15. Boudreau Conover, M.: Understanding Electrocardiography. Elsevier Health Sciences, St. Louis (2002)Google Scholar
  16. Bruce, E.N.: Biomedical Signal Processing and Signal Modeling. Wiley, New York (2000)Google Scholar
  17. de Chazal, P., Reilly, R.B.: A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 53(12), 2535–2543 (2006)CrossRefGoogle Scholar
  18. de Chazal, P., O’Dwyer, M., Reilly, R.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)CrossRefGoogle Scholar
  19. Chowdhury, E., Ludeman, L.C.: Discrimination of cardiac arrhythmias using a fuzzy rule-based method. In: The Proceedings of the Conference Computers in Cardiology, 25–28 September, pp. 549–552. Bethesda, USA (1994)Google Scholar
  20. Cox, J.R., Nolle, F.N., Fozzard, H.A., Oliver, G.C.: AZTEC preprocessing program for real-time ECG rhythm analysis. IEEE Trans. Biomed. Eng. BME-15, 128–129 (1968)Google Scholar
  21. Cremer,M.: Üeber die Direkte Ableitung der Aktionsstrome des Menslichen Herzensvom Oesophagus uber das Elecktrokardiogram des Fotus. Munch, Med. Wochr. 53, 811 (1906)Google Scholar
  22. Czogala, E., Leski, J.: Application of entropy and energy measure of fuzziness to processing of ECG signal. Fuzzy Sets Syst. 97(1), 9–18 (1998)CrossRefGoogle Scholar
  23. Czogala, E., Leski, J.: Entropy and energy measures of fuzziness in ECG signal processing. W monografii. In: Szczepaniak, P.S., Lisboa, P.J.G., Kacprzyk, J. (eds.) Fuzzy Systems in Medicine, pp. 227–245. Physica-Verlag, Springer-Verlag Com., Heidelberg, New York (2000).Google Scholar
  24. Czogala, E., Leski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Physica-Verlag, Springer-Verlag Com., Heidelberg, New York (2000)Google Scholar
  25. Dubin, D.: Rapid interpretation of EKG’s, 6th ed. Cover Inc., Tampa (2000)Google Scholar
  26. Evans, S., Hastings, H., Bodenheimer, M.: Differentiation of beats of ventricular and sinus origin using a self-training neural network. PACE 17, 611–626 (1994)CrossRefGoogle Scholar
  27. Fernandez-Chimeno, M., Quilez, M., Silva, F.: Understanding electrosurgical unit perturbations in order to address hospital operating room electromagnetic compatibility. IEEE Trans. Biomed. Eng. 53(6), 1205–1207 (2006)CrossRefGoogle Scholar
  28. Gacek, A., Pedrycz, W.: A genetic segmentation of ECG signals. IEEE Trans. Biomed. Eng. 50(10), 1203–1208 (2003)CrossRefGoogle Scholar
  29. Gacek, A., Jeżewski, J.: Representation of ECG signals using the segmentation technique. Biocybern. Biomed. Eng. 23(4), 33–43 (2003a)Google Scholar
  30. Gacek, A., Jeżewski, J.: w-FCM: clustering with weights and its application to ECG signal analysis. Polish J. Med. Phys. Eng. 9(2), 931–941 (2003b)Google Scholar
  31. Gacek,A., Pedrycz, W.: Logic characterization and classification of ECG signals. In: Leonides, C.T. (ed.) Medical Imaging Systems Technology. Methods in Cardiovascular and Brain Systems, pp. 183–206. World Scientific, Hackensack/London (2005)Google Scholar
  32. Gacek, A., Pedrycz, W.: A granular description of ECG signals. IEEE Trans. Biomed. Eng. 53(10), 1972–1982 (2006)CrossRefGoogle Scholar
  33. Gertsch, M.: The ECG: A Two-Step Approach to Diagnosis. Springer, New York (2003)Google Scholar
  34. Hampton, J.R.: The ECG in Practice, 4th edn. Elsevier Science Limited, Oxford, United Kingdom (2003)Google Scholar
  35. Haque, M.A., Rahman, M.E., Sayeed, C.A.A., Uddin, B.M.Z.: A fast algorithm in detecting ECG characteristic points. Proceedings of the ICECE, Dhaka, pp. 160–163 (2002)Google Scholar
  36. Hilton, M.L.: Wavelet and wavelet packet compression of electrocardiograms. IEEE Trans. Biomed. Eng. 394(May), 402–444 (1997)Google Scholar
  37. Horowitz, S.: A syntactic algorithm for peak detection in waveforms with applications to cardiography. CACM 18(5), 281–285 (1975)MATHGoogle Scholar
  38. Hu, Y., Palreddy, S., Tompkins, W.J.: A patient-adaptable ECG beat classifier using a mixture of experts approach. IEEE Trans. Biomed. Eng. 44(9), 891–900 (1997)CrossRefGoogle Scholar
  39. Huang, B., Wang, Y., Chen, J.: 2-D compression of ECG signals using ROI mask and conditional entropy coding. IEEE Trans. Biomed. Eng. 56(4), 1261–1263 (2009)MathSciNetCrossRefGoogle Scholar
  40. Iwata, A., Y. Nagasaka, Suzumura, N.: Data compression of the ECG using neural network for digital Holter monitor. IEEE Eng. Med. Biol. Mag. 9(3), 53–57 (1990)Google Scholar
  41. Jane, R., Rix, H., Caminal, P., Laguna, P.: Alignment methods for averaging of high-resolution cardiac signals: a comparative study of performance. IEEE Trans. Biomed. Eng. 38(6), 571–579 (1991)CrossRefGoogle Scholar
  42. Jesus, S., Rix, H.: High resolution ECG analysis by an improved signal averaging method and comparison with a beat-to-beat approach. J. Biomed. Eng. 10, 25–32 (1986)CrossRefGoogle Scholar
  43. Kadambe, S., Murray, R., Boudreaux-Bartels, G.: Wavelet transform-based QRS complex detector. IEEE Trans. Biomed. Eng. 46(7), 838–848 (1999)CrossRefGoogle Scholar
  44. Kanjilal, P.P., Palit, S., Saha, G.: Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Trans. Biomed. Eng. 44(1), 51–59 (1997)CrossRefGoogle Scholar
  45. Kowalak, J.L., Turkington, C.: Lippincott Manual of Nursing Practice series: ECG Interpretation. Lippincott Williams & Wilkins, Ambler (2007)Google Scholar
  46. Köhler, B.U., Hennig, C., Orglmeister, R.: The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 21(Jan.–Feb.), 42–57 (2002)Google Scholar
  47. Kundu, M., Nasipuri, M., Basu, D.K.: A reasoning system for on-line interpretation of ECG signal. TENCON’93, Beijing, pp. 827–838 (1993)Google Scholar
  48. Kundu, M., Nasipuri, M., Basu, D.K.: A knowledge based approach to ECG interpretation using fuzzy logic. IEEE Trans. Syst. Man Cybern. – Part B Cybern. 28(2), 237–243 (1998)Google Scholar
  49. Kundu, M., Nasipuri, M., Basu, D.K.: Knowledge-based ECG interpretation: a critical review. Pattern Recognit. 33, 351–373 (2000)CrossRefGoogle Scholar
  50. Lee, R.G., Chol, I.C., Lai, C.C., Liu, M.H., Chiu, M.J.: A novel QRS detection algorithm applied to the analysis for heart rate variability of patients with sleep apnea. J. Biomed. Eng. Appl. Basis & Commun. 17(Oct.), 258–262 (2005)Google Scholar
  51. Lewandowski, P., Meste, O., Maniewski, R., Mroczka, T., Steinbach, K., Rix, H.: Risk evaluation of ventricular tachycardia using wavelet transform irregularity of the high-resolution electrocardiogram. Med. Biol. Eng. Comput. 38, 666–673 (2000)CrossRefGoogle Scholar
  52. Li, C., Zheng, C.: Tai: detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)CrossRefGoogle Scholar
  53. Lin, Y.-D., Hu, Y.H.: Power-line interference detection and suppression in ECG signal processing. IEEE Trans. Biomed. Eng. 55(1), 354–357 (2008)MathSciNetCrossRefGoogle Scholar
  54. Linh,T.H., Osowski, S., Stodolski, M.: On-line heart beat recognition using Hermite polynomials and neuro-fuzzy network. IEEE Trans. Instrum. Meas. 52(4), 1224–1231 (2003)CrossRefGoogle Scholar
  55. Lippincott Williams & Wilkins: Interpreting Difficult ECGs: A Rapid Reference. Lippincott Williams & Wilkins, Philadelphia (2005)Google Scholar
  56. Leski, J., Henzel, N.: A new fuzzy method for high-resolution localization of ECG waves. Proceedings of the FUZZ-IEEE, Seoul, pp 154–157 (1999a)Google Scholar
  57. Leski, J., Henzel, N.: Biomedical signal averaging with highly-quantized weights. Proceeding of the IEEE-EMBS, Atlanta, p. 428 (1999b)Google Scholar
  58. von Maltzahn, W.W., Nagel, J.H.: Chapter 52: Biopotential amplifiers. In: Bronzino, J.D. (ed.) Medical Devices and Systems. CRC Press, Hartford (2006)Google Scholar
  59. Maniewski, R.: High resolution electrocardiography measurement and analysis. Biocybern. Biomed. Eng. 20(1), 5–17 (2000)Google Scholar
  60. Mateo, J., Laguna, P.: Improved heart rate variability signal analysis from the beat occurrence times according to the IPFM model. IEEE Trans. Biomed. Eng. 47(8), 985–996 (2000)CrossRefGoogle Scholar
  61. Monasterio, V., Laguna, P., Martínez, J.P.: Multilead analysis of T-wave alternans in the ECG using principal component analysis. IEEE Trans. Biomed. Eng. 56(7), 1880–1890 (2009)CrossRefGoogle Scholar
  62. Moon, B.S., Lee, H.C., Lee, Y.H., Park, J.C., Oh, I.S., Lee, J.W.: Fuzzy systems to process ECG and EEG signals for quantification of mental workload. Inform. Sci. 142(1–4), 23–35 (2002)MATHCrossRefGoogle Scholar
  63. Mroczka, T., Lewandowski, P., Maniewski, R., Liebert, A., Spioch, M., Steinbach, K.: Effectiveness of high resolution ECG spectral analysis in discrimination of patients prone to ventricular tachycardia and fibrillation. Med. Sci. Monit. 6(5), 1018–1026 (2000)Google Scholar
  64. Narayanaswamy, S.: High resolution electrocardiography. Indian Pacing Electrocardiography J. 2, 50–56 (2002)Google Scholar
  65. Nave, G., Cohen, A.: ECG compression using long-term prediction. IEEE Trans. Biomed. Eng. 40(9), 877–885 (1993)CrossRefGoogle Scholar
  66. Osowski, S., Linh, T.: ECG beat recognition using fuzzy hybrid neural network. IEEE Trans. Biomed. Eng. 48(11), 1265–1271 (2001)CrossRefGoogle Scholar
  67. Papakonstantinou, G., Skordolakis, E., Gritazali, F.: A attribute grammar for QRS detection. Pattern Recognit. 19, 297–303 (1986)CrossRefGoogle Scholar
  68. Papakonstantinou, G., Gritazali, F.: Syntactic filtering of ECG waveforms. Comput. Biomed. Res. 14, 158–167 (1981)CrossRefGoogle Scholar
  69. Pawar, T., Anantakrishnan, N.S., Chaudhuri, S., Duttagupta, S.P.: Transition detection in body movement activities for wearable ECG. IEEE Trans. Biomed. Eng. 54(6), 1149–1153 (2007a)CrossRefGoogle Scholar
  70. Pawar, T., Chaudhuri, S., Duttagupta, S.P.: Body movement activity recognition for ambulatory cardiac monitoring. IEEE Trans. Biomed. Eng. 54(5), 874–883 (2007b)CrossRefGoogle Scholar
  71. Pedrycz, W., Gacek, A.: Learning of fuzzy automata. Int. J. Comput. Intell. Appl. 1(1), 19–33 (2001a)CrossRefGoogle Scholar
  72. Pedrycz, W., Gacek, A.: Information granulation and signal quantization. Kybernetes 30(2), 179–192 (2001b)CrossRefGoogle Scholar
  73. Pedrycz, W., Gacek, A.: Temporal granulation and its application to signal analysis. Inform. Sci. 143, 47–71 (2002)MATHCrossRefGoogle Scholar
  74. Pedrycz, W., Vasilakos, A.V., Gacek, A.: Information granulation for concept formation. Proceedings of ACM Symposium on Applied Computing, vol. 1, 19–21 March 2000, Villa Como, pp. 484–489 (2000)Google Scholar
  75. Piȩtka E.: Feature extraction in computerized approach to the ECG analysis. Pattern Recognit. 24, 139–146 (1991)CrossRefGoogle Scholar
  76. Rangayyan, R.M.: Biomedical Signal Analysis. A Case-Study Approach. IEEE Press, Wiley-Interscience, John Wiley & Sons, Inc. (2002)Google Scholar
  77. Rompelman, O., Janssen, R.J., Koeleman, A.S.M., Van Der Akker, T.J., Ros, H.H.: Practical limitations for the estimation of P-wave and QRS-complex occurrence times. Automedica 6, 269–284 (1986)Google Scholar
  78. Ruttimann, U.E., Pibperger, H.V.: Compression of the ECG by prediction or interpolation and entropy encoding. IEEE Trans. Biomed. Eng. BME-26(11), 613–623 (1979)Google Scholar
  79. Santopietro, R.F.: The origin and characterization of the primary signal, noise, and interference sources in the high frequency electrocardiogram. Proc. IEEE 65(5), 707–713 (1977)CrossRefGoogle Scholar
  80. Sayadi, O., Shamsollahi, M.B.: Model-based fiducial points extraction for baseline wandered electrocardiograms. IEEE Trans. Biomed. Eng. 55(1), 347–351 (2008)CrossRefGoogle Scholar
  81. Silipo, R., Marchesi, C.: Artificial neural networks for automatic ECG analysis. IEEE Trans. Acoustics Speech Signal Process. 46(5), 1417–1425 (1998)Google Scholar
  82. Silipo, R., Bortolan, G., Marchesi, C.: Design of hybrid architectures based on neural classifier and RBF pre-processing for ECG analysis. Int. J. Approx. Reason. 21(2), 177–196 (1999)MATHCrossRefGoogle Scholar
  83. Simson, M.B.: Use of signals in the terminal QRS complex to identify patients with ventricular tachycardia after myocardial infarction. Circulation 64, 235–242 (1981)CrossRefGoogle Scholar
  84. Skillmasters: Expert ECG Interpretation. Skillmasters Series. Lippincott Williams & Wilkins, Philadelphia (2006)Google Scholar
  85. Skordolakis, E.: Syntactic ECG pattern processing: a review. Pattern Recognit. 19(4), 305–313 (1986)CrossRefGoogle Scholar
  86. Sornmo, L., Laguna, P. Biomedical Signal Processing in Cardiac and Neurological Applications, Biomedical Engineering. Academic Press, New York (2005)Google Scholar
  87. Stockman, G.C., Kanal, L.N.: Problem reduction representation for the linguistic analysis of waveforms. IEEE Trans. Pattern Anal. Mach. Intell. 5(3), 287–298 (1983)CrossRefGoogle Scholar
  88. Stranneby, D.: Digital Signal Processing: DSP and Applications. Elsevier Inc., Burlington (2001)Google Scholar
  89. Su, S.W., Wang, L., Celler, B.G., Savkin, A.V., Guo, Y.: Identification and control for heart rate regulation during treadmill exercise. IEEE Trans. Biomed. Eng. 54(7), 1238–1246 (2007)CrossRefGoogle Scholar
  90. Suzuki, Y.: Self-organizing QRS-wave recognition in ECG using neural networks. IEEE Trans. Neural Netw. 6(6), 1469–1477 (1995)CrossRefGoogle Scholar
  91. Tai, S.C., Sun, C.C., Tan, W.C.: 2-D ECG compression method based on wavelet transform and modified SPIHT. IEEE Trans. Biomed. Eng. 52(6), 999–1008 (2005)CrossRefGoogle Scholar
  92. T.F. of the ESC/ASPE: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381 (1996)Google Scholar
  93. Trahanias, P., Skordolakis, E.: Syntactic pattern recognition of the ECG. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 648–657 (1990)CrossRefGoogle Scholar
  94. Udupa, K., Murphy, I.S.N.: Syntactic approach to ECG rhythm analysis. IEEE Trans. Biomed. Eng. 27(7), 425–430 (1980)CrossRefGoogle Scholar
  95. Wang, J.T., Sehmi, A.S., Jones, N.B., Bono, D.P.: A knowledge-based systems for qualitative ECG simulation and ECG analysis. In: The Proceedings of the Conference Computers in Cardiology, 25–28 September 1994, pp. 733–736. Bethesda, USA (1991)Google Scholar
  96. Wang, Y., Zhu, Y., Thakor, N.V., Xu, Y.: A short-time multifractal approach for arrhythmia detection based on fuzzy neural network. IEEE Trans. Biomed. Eng. 48(9), 989–995 (2001)CrossRefGoogle Scholar
  97. Wei, J.J., Chang, C.J., Chou, N.K., Jan,G.J.: ECG data compression using truncated singular value decomposition. IEEE Trans. Biomed. Eng. 290(Dec.), 299–295 (2001)Google Scholar
  98. Wiese, S.R., Anheier, P., Connemara, R.D., Mollner, A.T., Neils, T.F., Khan, J.A., Webster, J.G.: Electrocardiographic motion artifact versus electrode impedance. IEEE Trans. Biomed. Eng. 52(1), 136–139 (2005)CrossRefGoogle Scholar
  99. Wu, S., Qian, Y., Gao, Z., Lin, J.: A novel method for beat-to-beat detection of ventricular late potentials. IEEE Trans. Biomed. Eng. 48(8), 931–935 (2001)CrossRefGoogle Scholar
  100. Xue, Q., Hu, Y.H., Tompkins, W.J.: Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans. Biomed. Eng. 39(4), 317–329 (1992)CrossRefGoogle Scholar
  101. Xue, Q., Reddy, B.R.: Late potentials recognition by artificial neural networks. IEEE Trans. Biomed. Eng. 44(2), 132–143 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Institute of Medical Technology and EquipmentZabrzePoland

Personalised recommendations