Skip to main content

An Introduction to ECG Signal Processing and Analysis

  • Chapter
  • First Online:

Abstract

ECGs are important biomedical signals, which are reflective of an electric activity of the heart. They form a subject of intensive research for over 100 years. ECG signals are one of the best-understood signals being at the same time an important source of diagnostic information. Because of this, in the recent years there has been a steady and intensive research with intent of developing efficient and effective methods of processing and analysis of ECG signals with emphasis on the discovery of essential and novel diagnostic information.This chapter offers a comprehensive overview of main problems concerning analysis and signal processing in ECG systems. Here the systems are meant in a broad sense embracing monitoring, diagnostic and therapeutic systems, whose functioning relies in one way or another on the analysis of electrocardiograms. In general we will be referring to them as ECG systems. An analysis of ECG signals requires their preprocessing and a suitable representation so that depending upon the nature of the ECG system, it helps reveal the required diagnostic information.The chapter is arranged into three parts. In the first one, we focus on the essentials of ECG signals, its characteristic features, and the very nature of the associated diagnostic information. In the second part, we elaborate on a sequence of phases of ECG signal processing, and analysis as they appear in ECG systems. Finally, in the third part, we offer a description of essential ECG tests.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aaronson, P.I., Ward, J.P., Wiener C.M.: The Cardiovascular System at a Glance, Blackwell Publishing Ltd. (2004)

    Google Scholar 

  • Acharya, U.R., Joseph, K.P., Kannathal, N., Lim, C.M., Suri, J.S.: Heart rate variability: a review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006)

    Article  Google Scholar 

  • Acharya, U.R., Suri, J.S., Spaan, J.A.E., Krishan,S.M.: Advances in Cardiac Signal Processing. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  • Afonso, V.X., Tompkins, W.J., Nguyen, T.Q., Luo, S.: ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46(2), 192–202 (1999)

    Article  Google Scholar 

  • Ahmed, N., Milne, P.I.: Electrocardiographic data compression via orthogonal transforms. IEEE Trans. Biomed. Eng. BME-22, 484–487 (1975)

    Google Scholar 

  • Alesanco, A., García, J.: Automatic real-time ECG coding methodology guaranteeing signal interpretation quality. IEEE Trans. Biomed. Eng. 55(11), 2519–2527 (2008)

    Article  Google Scholar 

  • Almeida, R., Pueyo, E., Martínez, J.P., Rocha, A.P., Laguna, P.: Quantification of the QT variability related to HRV: robustness study facing automatic delineation and noise on the ECG. Comput. Cardiol. 31, 769–772 (2004)

    Article  Google Scholar 

  • Almeida, R., Gouveia, S., Rocha, A.P., Pueyo, E., Martínez, J.P., Laguna, P.: QT variability and HRV interactions in ECG: quantification and reliability. IEEE Trans. Biomed. Eng. 53(7), 1317–1329 (2006)

    Article  Google Scholar 

  • Bailon, R., Sornmo, L., Laguna, P.: A robust method for ECG-based estimation of the respiratory frequency during stress testing. IEEE Trans. Biomed. Eng. 53(7), 1273–1285 (2006)

    Article  Google Scholar 

  • Barro, S., Fernandez-Delgado, M., Regueiro, J.A., Sanchez, E.: Classifying multichannel ECG patterns with an adaptive neural network. IEEE Eng. Med. Biol. Mag. 17(1), 45–55 (1998)

    Article  Google Scholar 

  • Berbari, E.J., Bock, E.A., Cházaro, A.C., Sun, X., Sörnmo, L.: High-resolution analysis of ambulatory electrocardiograms to detect possible mechanism of premature ventircular beats. IEEE Trans. Biomed. Eng. 52(4), 593–599 (2005)

    Article  Google Scholar 

  • Bortolan, G., Pedrycz, W.: Fuzzy descriptive models: an interactive framework of information granulation. IEEE Trans. Fuzzy Syst. 10(6), 743–755 (2002a)

    Article  Google Scholar 

  • Bortolan, G., Pedrycz,W.: An interactive framework for an analysis of ECG signals. Artif. Intell. Med. 24, 109–132 (2002b)

    Article  Google Scholar 

  • Botter,E., Nascimento, C.L., Yoneyama, T.: A neural network with asymmetric basis function for feature extraction of ECG P waves. IEEE Trans. Neural Netw. 12(5), 1252–1255 (2001)

    Article  Google Scholar 

  • Boudreau Conover, M.: Understanding Electrocardiography. Elsevier Health Sciences, St. Louis (2002)

    Google Scholar 

  • Bruce, E.N.: Biomedical Signal Processing and Signal Modeling. Wiley, New York (2000)

    Google Scholar 

  • de Chazal, P., Reilly, R.B.: A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 53(12), 2535–2543 (2006)

    Article  Google Scholar 

  • de Chazal, P., O’Dwyer, M., Reilly, R.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)

    Article  Google Scholar 

  • Chowdhury, E., Ludeman, L.C.: Discrimination of cardiac arrhythmias using a fuzzy rule-based method. In: The Proceedings of the Conference Computers in Cardiology, 25–28 September, pp. 549–552. Bethesda, USA (1994)

    Google Scholar 

  • Cox, J.R., Nolle, F.N., Fozzard, H.A., Oliver, G.C.: AZTEC preprocessing program for real-time ECG rhythm analysis. IEEE Trans. Biomed. Eng. BME-15, 128–129 (1968)

    Google Scholar 

  • Cremer,M.: Üeber die Direkte Ableitung der Aktionsstrome des Menslichen Herzensvom Oesophagus uber das Elecktrokardiogram des Fotus. Munch, Med. Wochr. 53, 811 (1906)

    Google Scholar 

  • Czogala, E., Leski, J.: Application of entropy and energy measure of fuzziness to processing of ECG signal. Fuzzy Sets Syst. 97(1), 9–18 (1998)

    Article  Google Scholar 

  • Czogala, E., Leski, J.: Entropy and energy measures of fuzziness in ECG signal processing. W monografii. In: Szczepaniak, P.S., Lisboa, P.J.G., Kacprzyk, J. (eds.) Fuzzy Systems in Medicine, pp. 227–245. Physica-Verlag, Springer-Verlag Com., Heidelberg, New York (2000).

    Google Scholar 

  • Czogala, E., Leski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Physica-Verlag, Springer-Verlag Com., Heidelberg, New York (2000)

    Google Scholar 

  • Dubin, D.: Rapid interpretation of EKG’s, 6th ed. Cover Inc., Tampa (2000)

    Google Scholar 

  • Evans, S., Hastings, H., Bodenheimer, M.: Differentiation of beats of ventricular and sinus origin using a self-training neural network. PACE 17, 611–626 (1994)

    Article  Google Scholar 

  • Fernandez-Chimeno, M., Quilez, M., Silva, F.: Understanding electrosurgical unit perturbations in order to address hospital operating room electromagnetic compatibility. IEEE Trans. Biomed. Eng. 53(6), 1205–1207 (2006)

    Article  Google Scholar 

  • Gacek, A., Pedrycz, W.: A genetic segmentation of ECG signals. IEEE Trans. Biomed. Eng. 50(10), 1203–1208 (2003)

    Article  Google Scholar 

  • Gacek, A., Jeżewski, J.: Representation of ECG signals using the segmentation technique. Biocybern. Biomed. Eng. 23(4), 33–43 (2003a)

    Google Scholar 

  • Gacek, A., Jeżewski, J.: w-FCM: clustering with weights and its application to ECG signal analysis. Polish J. Med. Phys. Eng. 9(2), 931–941 (2003b)

    Google Scholar 

  • Gacek,A., Pedrycz, W.: Logic characterization and classification of ECG signals. In: Leonides, C.T. (ed.) Medical Imaging Systems Technology. Methods in Cardiovascular and Brain Systems, pp. 183–206. World Scientific, Hackensack/London (2005)

    Google Scholar 

  • Gacek, A., Pedrycz, W.: A granular description of ECG signals. IEEE Trans. Biomed. Eng. 53(10), 1972–1982 (2006)

    Article  Google Scholar 

  • Gertsch, M.: The ECG: A Two-Step Approach to Diagnosis. Springer, New York (2003)

    Google Scholar 

  • Hampton, J.R.: The ECG in Practice, 4th edn. Elsevier Science Limited, Oxford, United Kingdom (2003)

    Google Scholar 

  • Haque, M.A., Rahman, M.E., Sayeed, C.A.A., Uddin, B.M.Z.: A fast algorithm in detecting ECG characteristic points. Proceedings of the ICECE, Dhaka, pp. 160–163 (2002)

    Google Scholar 

  • Hilton, M.L.: Wavelet and wavelet packet compression of electrocardiograms. IEEE Trans. Biomed. Eng. 394(May), 402–444 (1997)

    Google Scholar 

  • Horowitz, S.: A syntactic algorithm for peak detection in waveforms with applications to cardiography. CACM 18(5), 281–285 (1975)

    MATH  Google Scholar 

  • Hu, Y., Palreddy, S., Tompkins, W.J.: A patient-adaptable ECG beat classifier using a mixture of experts approach. IEEE Trans. Biomed. Eng. 44(9), 891–900 (1997)

    Article  Google Scholar 

  • Huang, B., Wang, Y., Chen, J.: 2-D compression of ECG signals using ROI mask and conditional entropy coding. IEEE Trans. Biomed. Eng. 56(4), 1261–1263 (2009)

    Article  MathSciNet  Google Scholar 

  • Iwata, A., Y. Nagasaka, Suzumura, N.: Data compression of the ECG using neural network for digital Holter monitor. IEEE Eng. Med. Biol. Mag. 9(3), 53–57 (1990)

    Google Scholar 

  • Jane, R., Rix, H., Caminal, P., Laguna, P.: Alignment methods for averaging of high-resolution cardiac signals: a comparative study of performance. IEEE Trans. Biomed. Eng. 38(6), 571–579 (1991)

    Article  Google Scholar 

  • Jesus, S., Rix, H.: High resolution ECG analysis by an improved signal averaging method and comparison with a beat-to-beat approach. J. Biomed. Eng. 10, 25–32 (1986)

    Article  Google Scholar 

  • Kadambe, S., Murray, R., Boudreaux-Bartels, G.: Wavelet transform-based QRS complex detector. IEEE Trans. Biomed. Eng. 46(7), 838–848 (1999)

    Article  Google Scholar 

  • Kanjilal, P.P., Palit, S., Saha, G.: Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Trans. Biomed. Eng. 44(1), 51–59 (1997)

    Article  Google Scholar 

  • Kowalak, J.L., Turkington, C.: Lippincott Manual of Nursing Practice series: ECG Interpretation. Lippincott Williams & Wilkins, Ambler (2007)

    Google Scholar 

  • Köhler, B.U., Hennig, C., Orglmeister, R.: The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 21(Jan.–Feb.), 42–57 (2002)

    Google Scholar 

  • Kundu, M., Nasipuri, M., Basu, D.K.: A reasoning system for on-line interpretation of ECG signal. TENCON’93, Beijing, pp. 827–838 (1993)

    Google Scholar 

  • Kundu, M., Nasipuri, M., Basu, D.K.: A knowledge based approach to ECG interpretation using fuzzy logic. IEEE Trans. Syst. Man Cybern. – Part B Cybern. 28(2), 237–243 (1998)

    Google Scholar 

  • Kundu, M., Nasipuri, M., Basu, D.K.: Knowledge-based ECG interpretation: a critical review. Pattern Recognit. 33, 351–373 (2000)

    Article  Google Scholar 

  • Lee, R.G., Chol, I.C., Lai, C.C., Liu, M.H., Chiu, M.J.: A novel QRS detection algorithm applied to the analysis for heart rate variability of patients with sleep apnea. J. Biomed. Eng. Appl. Basis & Commun. 17(Oct.), 258–262 (2005)

    Google Scholar 

  • Lewandowski, P., Meste, O., Maniewski, R., Mroczka, T., Steinbach, K., Rix, H.: Risk evaluation of ventricular tachycardia using wavelet transform irregularity of the high-resolution electrocardiogram. Med. Biol. Eng. Comput. 38, 666–673 (2000)

    Article  Google Scholar 

  • Li, C., Zheng, C.: Tai: detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)

    Article  Google Scholar 

  • Lin, Y.-D., Hu, Y.H.: Power-line interference detection and suppression in ECG signal processing. IEEE Trans. Biomed. Eng. 55(1), 354–357 (2008)

    Article  MathSciNet  Google Scholar 

  • Linh,T.H., Osowski, S., Stodolski, M.: On-line heart beat recognition using Hermite polynomials and neuro-fuzzy network. IEEE Trans. Instrum. Meas. 52(4), 1224–1231 (2003)

    Article  Google Scholar 

  • Lippincott Williams & Wilkins: Interpreting Difficult ECGs: A Rapid Reference. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  • Leski, J., Henzel, N.: A new fuzzy method for high-resolution localization of ECG waves. Proceedings of the FUZZ-IEEE, Seoul, pp 154–157 (1999a)

    Google Scholar 

  • Leski, J., Henzel, N.: Biomedical signal averaging with highly-quantized weights. Proceeding of the IEEE-EMBS, Atlanta, p. 428 (1999b)

    Google Scholar 

  • von Maltzahn, W.W., Nagel, J.H.: Chapter 52: Biopotential amplifiers. In: Bronzino, J.D. (ed.) Medical Devices and Systems. CRC Press, Hartford (2006)

    Google Scholar 

  • Maniewski, R.: High resolution electrocardiography measurement and analysis. Biocybern. Biomed. Eng. 20(1), 5–17 (2000)

    Google Scholar 

  • Mateo, J., Laguna, P.: Improved heart rate variability signal analysis from the beat occurrence times according to the IPFM model. IEEE Trans. Biomed. Eng. 47(8), 985–996 (2000)

    Article  Google Scholar 

  • Monasterio, V., Laguna, P., Martínez, J.P.: Multilead analysis of T-wave alternans in the ECG using principal component analysis. IEEE Trans. Biomed. Eng. 56(7), 1880–1890 (2009)

    Article  Google Scholar 

  • Moon, B.S., Lee, H.C., Lee, Y.H., Park, J.C., Oh, I.S., Lee, J.W.: Fuzzy systems to process ECG and EEG signals for quantification of mental workload. Inform. Sci. 142(1–4), 23–35 (2002)

    Article  MATH  Google Scholar 

  • Mroczka, T., Lewandowski, P., Maniewski, R., Liebert, A., Spioch, M., Steinbach, K.: Effectiveness of high resolution ECG spectral analysis in discrimination of patients prone to ventricular tachycardia and fibrillation. Med. Sci. Monit. 6(5), 1018–1026 (2000)

    Google Scholar 

  • Narayanaswamy, S.: High resolution electrocardiography. Indian Pacing Electrocardiography J. 2, 50–56 (2002)

    Google Scholar 

  • Nave, G., Cohen, A.: ECG compression using long-term prediction. IEEE Trans. Biomed. Eng. 40(9), 877–885 (1993)

    Article  Google Scholar 

  • Osowski, S., Linh, T.: ECG beat recognition using fuzzy hybrid neural network. IEEE Trans. Biomed. Eng. 48(11), 1265–1271 (2001)

    Article  Google Scholar 

  • Papakonstantinou, G., Skordolakis, E., Gritazali, F.: A attribute grammar for QRS detection. Pattern Recognit. 19, 297–303 (1986)

    Article  Google Scholar 

  • Papakonstantinou, G., Gritazali, F.: Syntactic filtering of ECG waveforms. Comput. Biomed. Res. 14, 158–167 (1981)

    Article  Google Scholar 

  • Pawar, T., Anantakrishnan, N.S., Chaudhuri, S., Duttagupta, S.P.: Transition detection in body movement activities for wearable ECG. IEEE Trans. Biomed. Eng. 54(6), 1149–1153 (2007a)

    Article  Google Scholar 

  • Pawar, T., Chaudhuri, S., Duttagupta, S.P.: Body movement activity recognition for ambulatory cardiac monitoring. IEEE Trans. Biomed. Eng. 54(5), 874–883 (2007b)

    Article  Google Scholar 

  • Pedrycz, W., Gacek, A.: Learning of fuzzy automata. Int. J. Comput. Intell. Appl. 1(1), 19–33 (2001a)

    Article  Google Scholar 

  • Pedrycz, W., Gacek, A.: Information granulation and signal quantization. Kybernetes 30(2), 179–192 (2001b)

    Article  Google Scholar 

  • Pedrycz, W., Gacek, A.: Temporal granulation and its application to signal analysis. Inform. Sci. 143, 47–71 (2002)

    Article  MATH  Google Scholar 

  • Pedrycz, W., Vasilakos, A.V., Gacek, A.: Information granulation for concept formation. Proceedings of ACM Symposium on Applied Computing, vol. 1, 19–21 March 2000, Villa Como, pp. 484–489 (2000)

    Google Scholar 

  • Piȩtka E.: Feature extraction in computerized approach to the ECG analysis. Pattern Recognit. 24, 139–146 (1991)

    Article  Google Scholar 

  • Rangayyan, R.M.: Biomedical Signal Analysis. A Case-Study Approach. IEEE Press, Wiley-Interscience, John Wiley & Sons, Inc. (2002)

    Google Scholar 

  • Rompelman, O., Janssen, R.J., Koeleman, A.S.M., Van Der Akker, T.J., Ros, H.H.: Practical limitations for the estimation of P-wave and QRS-complex occurrence times. Automedica 6, 269–284 (1986)

    Google Scholar 

  • Ruttimann, U.E., Pibperger, H.V.: Compression of the ECG by prediction or interpolation and entropy encoding. IEEE Trans. Biomed. Eng. BME-26(11), 613–623 (1979)

    Google Scholar 

  • Santopietro, R.F.: The origin and characterization of the primary signal, noise, and interference sources in the high frequency electrocardiogram. Proc. IEEE 65(5), 707–713 (1977)

    Article  Google Scholar 

  • Sayadi, O., Shamsollahi, M.B.: Model-based fiducial points extraction for baseline wandered electrocardiograms. IEEE Trans. Biomed. Eng. 55(1), 347–351 (2008)

    Article  Google Scholar 

  • Silipo, R., Marchesi, C.: Artificial neural networks for automatic ECG analysis. IEEE Trans. Acoustics Speech Signal Process. 46(5), 1417–1425 (1998)

    Google Scholar 

  • Silipo, R., Bortolan, G., Marchesi, C.: Design of hybrid architectures based on neural classifier and RBF pre-processing for ECG analysis. Int. J. Approx. Reason. 21(2), 177–196 (1999)

    Article  MATH  Google Scholar 

  • Simson, M.B.: Use of signals in the terminal QRS complex to identify patients with ventricular tachycardia after myocardial infarction. Circulation 64, 235–242 (1981)

    Article  Google Scholar 

  • Skillmasters: Expert ECG Interpretation. Skillmasters Series. Lippincott Williams & Wilkins, Philadelphia (2006)

    Google Scholar 

  • Skordolakis, E.: Syntactic ECG pattern processing: a review. Pattern Recognit. 19(4), 305–313 (1986)

    Article  Google Scholar 

  • Sornmo, L., Laguna, P. Biomedical Signal Processing in Cardiac and Neurological Applications, Biomedical Engineering. Academic Press, New York (2005)

    Google Scholar 

  • Stockman, G.C., Kanal, L.N.: Problem reduction representation for the linguistic analysis of waveforms. IEEE Trans. Pattern Anal. Mach. Intell. 5(3), 287–298 (1983)

    Article  Google Scholar 

  • Stranneby, D.: Digital Signal Processing: DSP and Applications. Elsevier Inc., Burlington (2001)

    Google Scholar 

  • Su, S.W., Wang, L., Celler, B.G., Savkin, A.V., Guo, Y.: Identification and control for heart rate regulation during treadmill exercise. IEEE Trans. Biomed. Eng. 54(7), 1238–1246 (2007)

    Article  Google Scholar 

  • Suzuki, Y.: Self-organizing QRS-wave recognition in ECG using neural networks. IEEE Trans. Neural Netw. 6(6), 1469–1477 (1995)

    Article  Google Scholar 

  • Tai, S.C., Sun, C.C., Tan, W.C.: 2-D ECG compression method based on wavelet transform and modified SPIHT. IEEE Trans. Biomed. Eng. 52(6), 999–1008 (2005)

    Article  Google Scholar 

  • T.F. of the ESC/ASPE: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381 (1996)

    Google Scholar 

  • Trahanias, P., Skordolakis, E.: Syntactic pattern recognition of the ECG. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 648–657 (1990)

    Article  Google Scholar 

  • Udupa, K., Murphy, I.S.N.: Syntactic approach to ECG rhythm analysis. IEEE Trans. Biomed. Eng. 27(7), 425–430 (1980)

    Article  Google Scholar 

  • Wang, J.T., Sehmi, A.S., Jones, N.B., Bono, D.P.: A knowledge-based systems for qualitative ECG simulation and ECG analysis. In: The Proceedings of the Conference Computers in Cardiology, 25–28 September 1994, pp. 733–736. Bethesda, USA (1991)

    Google Scholar 

  • Wang, Y., Zhu, Y., Thakor, N.V., Xu, Y.: A short-time multifractal approach for arrhythmia detection based on fuzzy neural network. IEEE Trans. Biomed. Eng. 48(9), 989–995 (2001)

    Article  Google Scholar 

  • Wei, J.J., Chang, C.J., Chou, N.K., Jan,G.J.: ECG data compression using truncated singular value decomposition. IEEE Trans. Biomed. Eng. 290(Dec.), 299–295 (2001)

    Google Scholar 

  • Wiese, S.R., Anheier, P., Connemara, R.D., Mollner, A.T., Neils, T.F., Khan, J.A., Webster, J.G.: Electrocardiographic motion artifact versus electrode impedance. IEEE Trans. Biomed. Eng. 52(1), 136–139 (2005)

    Article  Google Scholar 

  • Wu, S., Qian, Y., Gao, Z., Lin, J.: A novel method for beat-to-beat detection of ventricular late potentials. IEEE Trans. Biomed. Eng. 48(8), 931–935 (2001)

    Article  Google Scholar 

  • Xue, Q., Hu, Y.H., Tompkins, W.J.: Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans. Biomed. Eng. 39(4), 317–329 (1992)

    Article  Google Scholar 

  • Xue, Q., Reddy, B.R.: Late potentials recognition by artificial neural networks. IEEE Trans. Biomed. Eng. 44(2), 132–143 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Gacek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gacek, A. (2012). An Introduction to ECG Signal Processing and Analysis. In: Gacek, A., Pedrycz, W. (eds) ECG Signal Processing, Classification and Interpretation. Springer, London. https://doi.org/10.1007/978-0-85729-868-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-868-3_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-867-6

  • Online ISBN: 978-0-85729-868-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics