Advertisement

Pharmacokinetics and Pharmacodynamics: The Role of Sex and Gender

  • Flavia Franconi
  • Manuela Sanna
  • Elisabetta Straface
  • Roberto Chessa
  • Giuseppe Rosano
Chapter

Abstract

In the last years, the attention versus the influence of sex/gender in the drug response largely increased. Since 2001, the Institute of Medicine indicates that “sex matters,” that is, “being male or female is an important basic human variable that should be considered when designing and analyzing studies in all areas and at all levels of … health-related research.”1 Generally, the FDA does not attempt to determine why men are different from women and refers to any identified difference as a “gender difference.2

Keywords

Adverse Drug Effect Constitutive Androstane Receptor Sexual Hormone Constitutive Androstane Receptor Activity Organic Acid Transporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Supposte by grant “La Medicina di Genere come Obiettivo Strategico per la Sanità Pubblica: l’Appropriatezza della Cura per la Tutela della Salute della Donna” Ricerca Finalizzata -Ministero della Salute 2007. We are also grateful for the financial support over the years of Fondazione Banco di Sardegna and that of Regione Autonoma of Sardegna.

References

  1. 1.
    Wizemann ME, Pardne M. Exploring the Biological Contributions to Human Health: Does Sex Matter? Whasington DC: National Academy of Press, 2001 http://www.nap.edu/catalog/10028.html
  2. 2.
  3. 3.
    Leinwand LA. Sex is a potent modifier of the cardiovascular system. J Clin Invest. 2003;112:302-304.PubMedGoogle Scholar
  4. 4.
    Regitz-Zagrosek V. Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat Rev Drug Discov. 2006;5:425-439.PubMedCrossRefGoogle Scholar
  5. 5.
    Franconi F, Brunelleschi S, Steardo L, et al. Gender differences in drug responses. Pharmacol Res. 2007;55:81-95.PubMedCrossRefGoogle Scholar
  6. 6.
    Testimony. National Institutes of Health: Problems in Implementing Policy on Women in Study Populations. Washington, DC: General Accounting Office; July 24, 1990. GAO/T-HRD-90-50. http://archive.gao.gov/d48t13/141859.pdf. Accessed 13 March 2008.
  7. 7.
    Wenger NK. Coronary heart disease in women: highlights of the past 2 years – stepping stones, milestones and obstructing boulders. Nat Clin Pract Cardiovasc Med. 2006;3:194-202.PubMedCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Rogers W. Evidence-based medicine and women: do the principles and practice of EBM further women’s health? Bioethics. 2004;18:50-71.PubMedCrossRefGoogle Scholar
  10. 10.
    Johnell K, Weitoft GR, Fastbom J. Sex differences in inappropriate drug use: a register-based study of over 600,000 older people. Ann Pharmacother. 2009;43:1233-1239.PubMedCrossRefGoogle Scholar
  11. 11.
    Pinnow E, Sharma P, Parekh A, et al. Increasing participation of women in early phase clinical trials approved by the FDA. Womens Health Issues. 2009;19:1989-1993.Google Scholar
  12. 12.
    Heiat A, Gross CP, Krumholz HL. Representation of the elderly, women, and minorities in heart failure clinical trials. Arch Intern Med. 2002;162:1682-1688.PubMedCrossRefGoogle Scholar
  13. 13.
    Office of Research on Women’s Health and NHI Support for the Research on Women’s Health Issue. Report for Advisory Committee on Women’s Research on Women’s Health; fiscal years 2005&2006 online orwh.od.nhi.gov/pubs/complete_ICD_report05_06pdf. Accessed 4 December 2008.
  14. 14.
    Rademaker M. Do women have more adverse drug reactions? Am J Clin Dermatol. 2006;2:349-351.CrossRefGoogle Scholar
  15. 15.
    van den Bemt PM, Egberts AC, Lenderink AW, et al. Risk factors for the development of adverse drug events in hospitalized patients. Pharm World Sci. 2000;22:62-66.PubMedCrossRefGoogle Scholar
  16. 16.
    Trifiro G, Calogero G, Ippolito FM, et al. Adverse drug events in emergency department population: a prospective Italian study. Pharmacoepidemiol Drug Saf. 2005;14:333-340.PubMedCrossRefGoogle Scholar
  17. 17.
    Key Health Statistics from General Practice. 1998–2000 http://www.statistics.gov.uk/statbase/Product.asp?vlnk=4863. London: Office for National Statistics (last accessed 23 November 2006).
  18. 18.
    Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18,820 patients. BMJ. 2004;329:15-19.PubMedCrossRefGoogle Scholar
  19. 19.
    Patel H, Bell D, Molokhia M, et al. Trends in hospital admissions for adverse drug reactions in England: analysis of national hospital episode statistics 1998–2005. BMC Clin Pharmacol. 2007;7:9. doi: 10.1186/1472-6904-7-9.PubMedCrossRefGoogle Scholar
  20. 20.
    Leach S, Roy S. Adverse drug reactions: an investigation on an acute geriatric ward. Age Ageing. 1986;15:241-246.PubMedCrossRefGoogle Scholar
  21. 21.
    Kurokawa J, Suzuki T, Furukawa T, et al. New aspects for the treatment of cardiac diseases based on the diversity of functional controls on cardiac muscles: acute effects of female hormones on cardiac ion channels and cardiac repolarization. J Pharmacol Sci. 2009;109:334-340.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee PY, Alexander KP, Hammill BG, et al. Representation of elderly persons and women in published randomized trials of acute coronary syndromes. JAMA. 2001;286:708-713.PubMedCrossRefGoogle Scholar
  23. 23.
    Gandhi M, Aweeka F, Greenblatt RM, et al. Sex differences in pharmacokinetics and pharmacodynamics. Annu Rev Pharmacol Toxicol. 2004;44:499-523.PubMedCrossRefGoogle Scholar
  24. 24.
    Soldin OP, Mattison DR. Sex differences in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2009;48: 143-157.PubMedCrossRefGoogle Scholar
  25. 25.
    Everson GT. Gastrointestinal motility in pregnancy. Gastroenterol Clin North Am. 1992;21:751-776.PubMedGoogle Scholar
  26. 26.
    Harms CA, Rosenkranz S. Sex differences in pulmonary function during exercise. Med Sci Sports Exerc. 2008;40:664-668.PubMedCrossRefGoogle Scholar
  27. 27.
    Rohatagi S, Calic F, Harding N, et al. Pharmacokinetics, pharmacodynamics, and safety of inhaled cyclosporin A (ADI628) after single and repeated administration in healthy male and female subjects and asthmatic patients. J Clin Pharmacol. 2000;40:1211-1226.PubMedGoogle Scholar
  28. 28.
    Roy S, Flynn G. Transdermal delivery of narcotic analgesics: pH, anatomical, and subject influences on cutaneous permeability of fentanyl and sufentanil. Pharmacol Res. 1990;7:842-847.CrossRefGoogle Scholar
  29. 29.
    Dias V, Tendler B, Oparil S, et al. Experience with transdermal clonidine in African-American and Hispanic-American patients with hypertension: evaluation from a 12-week prospective, open label clinical trial in community-based clinics. Am J Ther. 1999;6:19-24.PubMedCrossRefGoogle Scholar
  30. 30.
    Mattison DR. Transdermal drug absorption during pregnancy. Clin Obstet Gynecol. 1990;33:718-727.PubMedCrossRefGoogle Scholar
  31. 31.
    Donovan MD. Sex and racial differences in pharmacological response: effect of route of administration and drug delivery system on pharmacokinetics. J Womens Health. 2005;14:30-37.CrossRefGoogle Scholar
  32. 32.
    Cotreau MM, von Moltke LL, Greenblatt DJ. The influence of age and sex on the clearance of cytochrome P450 3A substrates. Clin Pharmacokinet. 2005;44:33-60.PubMedCrossRefGoogle Scholar
  33. 33.
    Anderson GD. Pregnancy-induced changes in pharmacokinetics: a mechanistic-based approach. Clin Pharmacokinet. 2005;44:989-1008.PubMedCrossRefGoogle Scholar
  34. 34.
    Mann HJ. Drug-associated disease: cytochrome P450 interactions. Crit Care Clin. 2006;22:329-345.PubMedCrossRefGoogle Scholar
  35. 35.
    Urquhart BL, Tirona RG, Kim RB. Nuclear receptors and the regulation of drug metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol. 2007;47:566-578.PubMedCrossRefGoogle Scholar
  36. 36.
    Murray M. Role of signalling systems in the effects of dietary factors on the expression of mammalian CYPs. Expert Opin Drug Metab Toxicol. 2007;3:185-196.PubMedCrossRefGoogle Scholar
  37. 37.
    Szyf M. The dynamic epigenome and its implications in toxicology. Toxicol Sci. 2007;100:7-23.PubMedCrossRefGoogle Scholar
  38. 38.
    Hines RN, Koukouritaki SB, Poch MT, et al. Regulatory polymorphisms and their contribution to interindividual differences in the expression of enzymes influencing drug and toxicant disposition. Drug Metab Rev. 2008;40:263-301.PubMedCrossRefGoogle Scholar
  39. 39.
    Bock KW, Schrenk D, Forster A, et al. The influence of environmental and genetic factors on CYP2D6, CYP1A2 and UDP-glucuronosyltransferases in man using sparteine, caffeine, and paracetamol as probes. Pharmacogenetics. 1994;4:209-218.PubMedCrossRefGoogle Scholar
  40. 40.
    Yukawa E, Honda T, Ohdo S, et al. Population-based investigation of relative clearance of digoxin in Japanese patients by multiple trough screen analysis: an update. J Clin Pharmacol. 1997;37:92-100.PubMedGoogle Scholar
  41. 41.
    Dobbs NA, Twelves CJ, Gillies H, et al. Gender affects doxorubicin pharmacokinetics in patients with normal liver biochemistry. Cancer Chemother Pharmacol. 1995; 36: 473-476.PubMedCrossRefGoogle Scholar
  42. 42.
    Schwartz JB. The current state of knowledge on age, sex, and their interactions on clinical pharmacology. Clin Pharmacol Ther. 2007;82:87-92.PubMedCrossRefGoogle Scholar
  43. 43.
    Hernandez JP, Chapman LM, Kretschmer XC, et al. Gender specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice. Toxicol Appl Pharmacol. 2006;216:186-196.PubMedCrossRefGoogle Scholar
  44. 44.
    Wiwi CA, Gupte M, Waxman DJ. Sexually dimorphic P450 gene expression in liver-specific hepatocyte nuclear factor 4a-deficient mice. Mol Endocrinol. 2004;18:1975-1987.PubMedCrossRefGoogle Scholar
  45. 45.
    Wolbold R, Klein K, Burk O, et al. Sex is a major determinant of CYP3A4 expression in human liver. Hepatology. 2003;38:978-988.PubMedGoogle Scholar
  46. 46.
    Parkinson A, Mudra DR, Johnson C, et al. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 2004;199:193-209.PubMedCrossRefGoogle Scholar
  47. 47.
    Bigos KL, Pollock BG, Coley KC, et al. Sex, race, and smoking impact olanzapine exposure. J Clin Pharmacol. 2008;48:157-165.PubMedCrossRefGoogle Scholar
  48. 48.
    Anderson GD. Gender differences in pharmacological response. Int Rev Neurobiol. 2008;83:1-10.PubMedCrossRefGoogle Scholar
  49. 49.
    Schwartz JB. The influence of sex on pharmacokinetics. Clin Pharmacokinet. 2003;42:107-121. Erratum in: Clin Pharmacokinet. 2004;43:732.PubMedCrossRefGoogle Scholar
  50. 50.
    Doki K, Homma M, Kuga K, et al. Gender-associated differences in pharmacokinetics and anti-arrhythmic effects of flecainide in Japanese patients with supraventricular tachyarrhythmia. Eur J Clin Pharmacol. 2007;63: 951-957.PubMedCrossRefGoogle Scholar
  51. 51.
    Flockhart DA. Drug interactions: cytochrome P450 drug interaction table. Indianapolis: Indiana University School of Medicine; 2007. http://medicine.iupui.edu/flockhart/table.htm. Accessed 18 April 2008.
  52. 52.
    Thurmann PA, Haack S, Werner U, et al. Tolerability of β-blockers metabolized via cytochrome P450 2D6 is sex-dependent. Clin Pharmacol Ther. 2006;80:551-553.PubMedCrossRefGoogle Scholar
  53. 53.
    Hunt CM, Westerkam WR, Stave GM. Effect of age and gender on the activity of human hepatic CYP3A. Biochem Pharmacol. 1992;44:275-283.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhu B, Liu ZQ, Chen GL, et al. The distribution and gender difference of CYP3A activity in Chinese subjects. Br J Clin Pharmacol. 2003;55:264-269.PubMedCrossRefGoogle Scholar
  55. 55.
    Waxman DJ, O’Connor C. Growth hormone regulation of sex-dependent liver gene expression. Mol Endocrinol. 2006;20:2613-2629.PubMedCrossRefGoogle Scholar
  56. 56.
    Gorski JC, Vannaprasaht S, Hamman MA, et al. The effect of age, sex, and rifampin administration on intestinal and hepatic cytochrome P450 3A activity. Clin Pharmacol Ther. 2003;74:275-287. Erratum in: Clin Pharmacol Ther. 2004;75:249-252.PubMedCrossRefGoogle Scholar
  57. 57.
    Maronpot RR, Yoshizawa K, Nyska A, et al. Hepatic enzyme induction: histopathology. Toxicol Pathol. 2010;38:776-795.PubMedCrossRefGoogle Scholar
  58. 58.
    Kawamoto T, Kakizaki S, Yoshinari K, et al. Estrogen activation of the nuclear orphan receptor CAR (constitutive active receptor) in induction of the mouse Cyp2b10 gene. Mol Endocrinol. 2000;14:1897-1905.PubMedCrossRefGoogle Scholar
  59. 59.
    Yoshinari K, Sueyoshi T, Moore R, et al. Nuclear receptor CAR as a regulatory factor for the sexually dimorphic induction of CYP2B1 gene by phenobarbital in rat livers. Mol Pharmacol. 2001;59:278-284.PubMedGoogle Scholar
  60. 60.
    Schuetz E, Furuya K, Schuetz J. Interindividual variation in expression of P-glycoprotein in normal human liver and secondary hepatic neoplasms. J Pharmacol Exp Ther. 1995;275: 1011-1018.PubMedGoogle Scholar
  61. 61.
    Masuyama H, Hiramatsu Y, Mizutani Y, et al. The expression of pregnane X receptor and its target gene, cytochrome P450 3A1, in perinatal mouse. Mol Cell Endocrinol. 2001;172:47-56.PubMedCrossRefGoogle Scholar
  62. 62.
    Adlercreutz H, Hamalainen E, Gorbach S, et al. Dietary phyto-oestrogens and the menopause in Japan. Lancet. 1992;339:1233-1236.PubMedCrossRefGoogle Scholar
  63. 63.
    Goodman-Gruen D, Kritz-Silverstein D. Usual dietary isoflavone intake and body composition in postmenopausal women. Menopause. 2003;10:427-432.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhan S, Ho SC. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr. 2005;81:397-408.PubMedGoogle Scholar
  65. 65.
    Kashuba AD, Nafziger AN. Physiological changes during the menstrual cycle and their effects on the pharmacokinetics and pharmacodynamics of drugs. Clin Pharmacokinet. 1998;34:203-218.PubMedCrossRefGoogle Scholar
  66. 66.
    Ochs HR, Greenblatt DJ, Divoll M, et al. Diazepam kinetics in relation to age and sex. Pharmacology. 1981;23:24-30.PubMedCrossRefGoogle Scholar
  67. 67.
    Xue FS, Tong SY, Liao X, et al. Dose-response and time course of effect of rocuronium in male and female anesthetized patients. Anesth Analg. 1997;85:667-671.PubMedGoogle Scholar
  68. 68.
    Sowinski KM, Abel SR, Clark WR, et al. Effect of gender on the pharmacokinetics of ofloxacin. Pharmacotherapy. 1999;19:442-446.PubMedCrossRefGoogle Scholar
  69. 69.
    Morris M, Lee H, Predko L. Gender differences in the membrane transport of endogenous and exogenous compounds. Pharmacol Rev. 2003;55:229-240.PubMedCrossRefGoogle Scholar
  70. 70.
    Shammas FV, Dickstein K. Clinical pharmacokinetics in heart failure. An updated review. Clin Pharmacokinet. 1988;15:94-113.PubMedCrossRefGoogle Scholar
  71. 71.
    Catananti C, Liperoti R, Settanni S, et al. Heart failure and adverse drug reactions among hospitalized older adults. Clin Pharmacol Ther. 2009;86:307-310.PubMedCrossRefGoogle Scholar
  72. 72.
    Singh S, Zoble R, Brodsky M, et al. Efficacy and safety of oral dofetilide in converting to and maintaining sinus rhythm in patients with chronic atrial fibrillation or atrial flutter: the symptomatic atrial fibrillation investigative research on dofetilide (SAFIRE-D) study. Circulation. 2000;102:2385-2490.PubMedGoogle Scholar
  73. 73.
    Sabolić I, Asif AR, Budach WE, et al. Gender differences in kidney function. Pflugers Arch Eur J Physiol. 2007;455:397-429.CrossRefGoogle Scholar
  74. 74.
    Gartlehner G, Chapman A, Strobelberger M, Thaler K. Differences in efficacy and safety of pharmaceutical treatments between men and women: an umbrella review. PLoS One. 2010;5:e11895.PubMedCrossRefGoogle Scholar
  75. 75.
    Niesters M, Dahan A, Kest B, et al. Do sex differences exist in opioid analgesia? A systematic review and meta-analysis of human experimental and clinical studies. Pain. 2010;151:61-68.PubMedCrossRefGoogle Scholar
  76. 76.
    Chakrabarti S, Liu NJ, Gintzler AR. Formation of mu-/kappa-opioid receptor heterodimer is sex-dependent and mediates female-specific opioid analgesia. Proc Natl Acad Sci USA. 2010;107:20115-20119.PubMedCrossRefGoogle Scholar
  77. 77.
    Adamus M, Gabrhelik T, Marek O. Influence of gender on the course of neuromuscular block following a single bolus dose of cisatracurium or rocuronium. Eur J Anaesthesiol. 2008;25:589-595.PubMedCrossRefGoogle Scholar
  78. 78.
    Kaasinen V, Någren K, Hietala J, et al. Sex differences in extrastriatal dopamine D(2)-like receptors in the human brain. Am J Psychiatry. 2001;158:308-311.PubMedCrossRefGoogle Scholar
  79. 79.
    Xiang YT, Wang CY, Si TM, et al. Sex differences in use of psychotropic drugs and drug-induced side effects inschizophrenia patients: findings of the Research on Asia Psychotropic Prescription (REAP) studies. Aust N Z J Psychiatry. 2010;45(3):193-198.PubMedCrossRefGoogle Scholar
  80. 80.
    Haack S, Seeringer A, Thürmann PA, et al. Sex-specific differences in side effects of psychotropic drugs: genes or gender? Pharmacogenomics. 2009;10:1511-1526.PubMedCrossRefGoogle Scholar
  81. 81.
    Munro CA, McCaul ME, Wong DF, et al. Sex differences in striatal dopamine release in healthy adults. J Clin Psychiatry. 2006;59:966-974.Google Scholar
  82. 82.
    Lane HY, Chang YC, Chang WH, et al. Effects of gender and age on plasma levels of clozapine and its metabolites analyzed by critical statistics. J Clin Psychiatry. 1999;60:36-40.PubMedCrossRefGoogle Scholar
  83. 83.
    Nich C, McCance-Katz EF, Petrakis IL, et al. Sex differences in cocaine-dependent individuals’ response to disulfiram treatment. Addict Behav. 2004;29:1123-1128.PubMedCrossRefGoogle Scholar
  84. 84.
    Serova LI, Nostramo R, Veerasirikul M, et al. Varied mechanisms of oestradiol mediated regulation of dopamine β-hydroxylase transcription. J Neuroendocrinol. 2010. doi: 10.1111/j.1365-2826.2010.02086.x.
  85. 85.
    Tadić A, Müller MJ, Rujescu D, et al. The MAOA T941G polymorphism and short-term treatment response to mirtazapine and paroxetine in major depression. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:325-331.PubMedCrossRefGoogle Scholar
  86. 86.
    Borchers AT, Keen CL, Gershwin ME, et al. Drug-induced lupus. Ann N Y Acad Sci. 2007;1108:166-182.PubMedCrossRefGoogle Scholar
  87. 87.
    Lipshultz SE, Lipsitz SR, Mone SM, et al. Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med. 1995;332:1738-1743.PubMedCrossRefGoogle Scholar
  88. 88.
    Ostadal B, Netuka I, Maly J, et al. Gender differences in cardiac ischemic injury and protection-experimental aspects. Exp Biol Med. 2009;234:1011-1019.CrossRefGoogle Scholar
  89. 89.
    Malorni W, Campesi I, Straface E, et al. Redox features of the cell: a gender perspective. Antioxid Redox Signal. 2007;9:1779-1801.PubMedCrossRefGoogle Scholar
  90. 90.
    Pretorius M, Luther JM, Murphey LJ, et al. Angiotensin-converting enzyme inhibition increases basal vascular tissue plasminogen activator release in women but not in men. Arterioscler Thromb Vasc Biol. 2005;25:2435-2440.PubMedCrossRefGoogle Scholar
  91. 91.
    De Silva TM, Broughton BR, Drummond GR. Gender influences cerebral vascular responses to angiotensin II through Nox2-derived reactive oxygen species. Stroke. 2009;40:1091-1097.PubMedCrossRefGoogle Scholar
  92. 92.
    Hinojosa-Laborde C, Chapa I, Lange D, et al. Gender differences in sympathetic nervous system regulation. Clin Exp Pharmacol Physiol. 1999;26:122-126.PubMedCrossRefGoogle Scholar
  93. 93.
    Kneale BJ, Chowienczyk PJ, Brett SE, et al. Gender differences in sensitivity to adrenergic agonists of forearm resistance vasculature. J Am Coll Cardiol. 2000;36:1233-1238.PubMedCrossRefGoogle Scholar
  94. 94.
    Arias-Loza PA, Jazbutyte V, Pelzer T. Genetic and pharmacologic strategies to determine the function of estrogen receptor a and estrogen receptor b in the cardiovascular system. Gend Med. 2007;5:S34-S45.CrossRefGoogle Scholar
  95. 95.
    Malorni W, Straface E, Matarrese P, et al. Redox state and gender differences in vascular smooth muscle cells. FEBS Lett. 2008;582:635-642.PubMedCrossRefGoogle Scholar
  96. 96.
    Zhu Y, Bian Z, Lu P, et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor beta. Science. 2002;295:505-508.PubMedCrossRefGoogle Scholar
  97. 97.
    Kleinert H, Wallerath T, Euchenhofer C, et al. Estrogens increase transcription of the human endothelial NO synthase gene: analysis of the transcription factors involved. Hypertension. 1998;31:582-588.PubMedGoogle Scholar
  98. 98.
    Bae S, Zhang L. Gender differences in cardioprotection against ischemia/reperfusion injury in adult rat hearts: focus on akt and protein kinase C signaling. J Pharmacol Exp Ther. 2005;315:1125-1135.PubMedCrossRefGoogle Scholar
  99. 99.
    Camper-Kirby D, Welch S, Walker A, et al. Myocardial akt activation and gender: increased nuclear activity in females versus males. Circ Res. 2001;88:1020-1027.PubMedCrossRefGoogle Scholar
  100. 100.
    Tostes RC, Fortes ZB, Callera GE, et al. Endothelin, sex and hypertension. Clin Sci. 2008;114:85-97.PubMedCrossRefGoogle Scholar
  101. 101.
    Tsang S, Wu S, Liu J, et al. Testosterone protects rat hearts against ischaemic insults by enhancing the effects of alpha(1)-adrenoceptor stimulation. Br J Pharmacol. 2008; 153:693-709.PubMedCrossRefGoogle Scholar
  102. 102.
    English KM, Mandour O, Steeds RP, et al. Men with coronary artery disease have lower levels of androgens than men with normal coronary angiograms. Eur Heart J. 2000;21:890-894.PubMedCrossRefGoogle Scholar
  103. 103.
    English KM, Steeds RP, Jones TH, et al. Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina: a randomized, double-blind, placebo-controlled study. Circulation. 2000;102: 1906-1911.PubMedGoogle Scholar
  104. 104.
    Malkin CJ, Pugh PJ, Morris PD, et al. Testosterone replacement in hypogonadal men with angina improves ischaemic threshold and quality of life. Heart. 2004;90:871-874.PubMedCrossRefGoogle Scholar
  105. 105.
    Anthony MJ. Male/female differences in pharmacology: safety issues with QT-prolonging drugs. J Womens Health (Larchmt). 2005;14:47-52.CrossRefGoogle Scholar
  106. 106.
    Ofotokun I, Pomeroy C. Sex differences in adverse reactions to antiretroviral drugs. Top HIV Med. 2003;11:55-59.PubMedGoogle Scholar
  107. 107.
    Villa E, Karampatou A, Cammà C, et al. Early menopause is associated with lack of response to antiviral therapy in women with chronic hepatitis C. Gastroenterology. 2011; 140:818-829.PubMedCrossRefGoogle Scholar
  108. 108.
    Kim ES, Menon V. Status of women in cardiovascular clinical trials. Arterioscler Thromb Vasc Biol. 2009;29:279-281.PubMedCrossRefGoogle Scholar
  109. 109.
    Jann MW, ZumBrunnen TL, Tenjarla SN, et al. Relative bioavailability of ondansetron 8-mg oral tablets versus two extemporaneous 16-mg suppositories: formulation and gender differences. Pharmacotherapy. 1998;199:288-294.Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Flavia Franconi
    • 1
  • Manuela Sanna
    • 2
  • Elisabetta Straface
    • 3
  • Roberto Chessa
    • 2
  • Giuseppe Rosano
    • 4
  1. 1.Department of PharmacologyUniversity of SassariSassariItaly
  2. 2.INBB Laboratorio Nazionale di Osilo, INBBSassariItaly
  3. 3.Department of Therapeutic Research and Medicine Evaluation Istituto Superiore di SanitàIstituto Superiore di SanitàRomeItaly
  4. 4.Dipartimento di Scienze InternisticheIRCCS San Raffaele Pisana RomaRomeItaly

Personalised recommendations