Advertisement

Sex and Gender Differences in Hematology

  • Oliver Schmetzer
  • Anne Flörcken
Chapter

Abstract

Receiving the diagnosis of cancer presents always a severe crisis in the individual biography, challenging every aspect of normal life, including personal emotions, aims and future plans, family, relationships, careers, and financial matters. Many issues of everyday life are known to be gender related, and as such interfere with the coping abilities of the affected persons. Gender roles and aspects are fundamentally implemented in all layers of everyday life and in living with cancer. Some differences seem to have an especially deep impact.

Keywords

Acute Myeloid Leukemia Chronic Lymphocytic Leukemia Chronic Myeloid Leukemia Iron Deficiency Hematological Malignancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cook JD, Finch CA, Smith NJ. Evaluation of the iron status of a population. Blood. 1976;48(3):449.PubMedGoogle Scholar
  2. 2.
    Looker AC, Dallman PR, Carroll MD, Gunter EW, Johnson CL. Prevalence of iron deficiency in the United States. JAMA. 1997;277(12):973.PubMedCrossRefGoogle Scholar
  3. 3.
    Brittenham G. Disorders of iron metabolism: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Shattil SJ, et al., eds. Hematology Basic Principles and Practice. New York: Churchill Livingstone; 2005:481.Google Scholar
  4. 4.
    El-Maarri O, Becker T, Junen J, et al. Gender specific differences in levels of DNA methylation at selected loci from human total blood: a tendency toward higher methylation levels in males. Hum Genet. 2007;122(5):505.PubMedCrossRefGoogle Scholar
  5. 5.
    Merkel D, Moran DS, Yanovich R, et al. The association between hematological and inflammatory factors and stress fractures among female military recruits. Med Sci Sports Exerc. 2008;40(11 Suppl):S691.PubMedGoogle Scholar
  6. 6.
    Bain Barbara J. Blood Cells. A Practical Guide. London: Blackwell Science; 2002.Google Scholar
  7. 7.
    Nordin G, Martensson A, Swolin B, et al. A multicentre study of reference intervals for haemoglobin, basic blood cell counts and erythrocyte indices in the adult population of the Nordic countries. Scand J Clin Lab Invest. 2004; 64(4):385.PubMedCrossRefGoogle Scholar
  8. 8.
    Guyatt GH, Oxman AD, Ali M, Willan A, McIlroy W, Patterson C. Laboratory diagnosis of iron-deficiency anemia: an overview. J Gen Intern Med. 1992;7(2):145.PubMedCrossRefGoogle Scholar
  9. 9.
    Punnonen K, Irjala K, Rajamaki A. Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. Blood. 1997;89(3):1052.PubMedGoogle Scholar
  10. 10.
    Steinberg MH, Hsu H, Nagel RL, et al. Gender and haplotype effects upon hematological manifestations of adult sickle cell anemia. Am J Hematol. 1995;48(3):175.PubMedCrossRefGoogle Scholar
  11. 11.
    Hsu CY, Bates DW, Kuperman GJ, Curhan GC. Relationship between hematocrit and renal function in men and women. Kidney Int. 2001;59(2):725.PubMedCrossRefGoogle Scholar
  12. 12.
    Crooks CJ, West J, Solaymani-Dodaran M, Card TR. The epidemiology of haemochromatosis: a population-based study. Aliment Pharmacol Ther. 2009;29(2):183.PubMedCrossRefGoogle Scholar
  13. 13.
    Burke W, Thomson E, Khoury MJ, et al. Hereditary hemochromatosis: gene discovery and its implications for population-based screening. JAMA. 1998;280(2):172.PubMedCrossRefGoogle Scholar
  14. 14.
    Deugnier Y, Jouanolle AM, Chaperon J, et al. Gender-specific phenotypic expression and screening strategies in C282Y-linked haemochromatosis: a study of 9396 French people. Br J Haematol. 2002;118(4):1170.PubMedCrossRefGoogle Scholar
  15. 15.
    Lidegaard O, Kreiner S. Contraceptives and cerebral thrombosis: a five-year national case-control study. Contraception. 2002;65(3):197.PubMedCrossRefGoogle Scholar
  16. 16.
    Lidegaard O. Thrombotic diseases in young women and the influence of oral contraceptives. Am J Obstet Gynecol. 1998;179(3 Pt 2):S62.PubMedCrossRefGoogle Scholar
  17. 17.
    Roeloffzen WW, Kluin-Nelemans HC, Mulder AB, Veeger NJ, Bosman L, de Wolf JT. In normal controls, both age and gender affect coagulability as measured by thrombelastography. Anesth Analg. 2010;110(4):987.PubMedCrossRefGoogle Scholar
  18. 18.
    Gorton HJ, Warren ER, Simpson NA, Lyons GR, Columb MO. Thromboelastography identifies sex-related differences in coagulation. Anesth Analg. 2000;91(5):1279.PubMedGoogle Scholar
  19. 19.
    Cahill M, Mistry R, Chapman C, Wood JK, Barnett DB. Effects of age, sex and the oral contraceptive on the platelet membrane fibrinogen binding site (glycoprotein IIb/IIIa). Br J Clin Pharmacol. 1992;33(1):11.PubMedGoogle Scholar
  20. 20.
    Tsang CW, Lazarus R, Smith W, Mitchell P, Koutts J, Burnett L. Hematological indices in an older population sample: derivation of healthy reference values. Clin Chem. 1998; 44(1):96.PubMedGoogle Scholar
  21. 21.
    Moysidis T, Kroger K, Moerchel C, Santosa F, Grochenig E. Pulmonary embolism in young males and females in Germany: data from the Federal Statistical Office. Blood Coagul Fibrinolysis. 2010;21(6):511.PubMedCrossRefGoogle Scholar
  22. 22.
    Kroger K, Moerchel C, Moysidis T, Santosa F. Incidence rate of pulmonary embolism in Germany: data from the federal statistical office. J Thromb Thrombolysis. 2010;29(3):349.PubMedCrossRefGoogle Scholar
  23. 23.
    Blanco-Molina A, Trujillo-Santos J, Tirado R, et al. Venous thromboembolism in women using hormonal contraceptives. Findings from the RIETE Registry. Thromb Haemost. 2009;101(3):478.PubMedGoogle Scholar
  24. 24.
    Sakuma M, Nakamura M, Takahashi T, et al. Pulmonary embolism is an important cause of death in young adults. Circ J. 2007;71(11):1765.PubMedCrossRefGoogle Scholar
  25. 25.
    Stein PD, Huang H, Afzal A, Noor HA. Incidence of acute pulmonary embolism in a general hospital: relation to age, sex, and race. Chest. 1999;116(4):909.PubMedCrossRefGoogle Scholar
  26. 26.
    Laczkovics C, Grafenhofer H, Kaider A, et al. Risk of recurrence after a first venous thromboembolic event in young women. Haematologica. 2007;92(9):1201.PubMedCrossRefGoogle Scholar
  27. 27.
    Warkentin TE, Sheppard JA, Sigouin CS, Kohlmann T, Eichler P, Greinacher A. Gender imbalance and risk factor interactions in heparin-induced thrombocytopenia. Blood. 2006;108(9):2937.PubMedCrossRefGoogle Scholar
  28. 28.
    Levi F, Lucchini F, Negri E, La Vecchia C. Cancer mortality in the European Union, 1988–1997: the fall may approach 80,000 deaths a year. Int J Cancer. 2002;98(4):636.PubMedCrossRefGoogle Scholar
  29. 29.
    Molica S. Sex differences in incidence and outcome of chronic lymphocytic leukemia patients. Leuk Lymphoma. 2006;47(8):1477.PubMedCrossRefGoogle Scholar
  30. 30.
    Kravdal O, Hansen S. Hodgkin’s disease: the protective effect of childbearing. Int J Cancer. 1993;55(6):909.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen WY, Zeng X, Carter MG, et al. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet. 2003;33(2):197.PubMedCrossRefGoogle Scholar
  32. 32.
    Hu W, Feng Z, Teresky AK, Levine AJ. p53 regulates maternal reproduction through LIF. Nature. 2007;450(7170):721.PubMedCrossRefGoogle Scholar
  33. 33.
    Hu W, Feng Z, Atwal GS, Levine AJ. p53: a new player in reproduction. Cell Cycle. 2008;7(7):848.PubMedCrossRefGoogle Scholar
  34. 34.
    Naugler WE, Sakurai T, Kim S, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317(5834):121.PubMedCrossRefGoogle Scholar
  35. 35.
    Sander LE, Trautwein C, Liedtke C. Is interleukin-6 a gender-specific risk factor for liver cancer? Hepatology. 2007;46(4):1304.PubMedCrossRefGoogle Scholar
  36. 36.
    Prieto J. Inflammation, HCC and sex: IL-6 in the centre of the triangle. J Hepatol. 2008;48(2):380.PubMedCrossRefGoogle Scholar
  37. 37.
    Balbin M, Fueyo A, Tester AM, et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet. 2003;35(3):252.PubMedCrossRefGoogle Scholar
  38. 38.
    Gazzeri R, Galarza M, Gazzeri G. Growth of a meningioma in a transsexual patient after estrogen-progestin therapy. N Engl J Med. 2007;357(23):2411.PubMedCrossRefGoogle Scholar
  39. 39.
    Mossuz P, Cousin F, Castinel A, et al. Effects of two sex steroids (17beta estradiol and testosterone) on proliferation and clonal growth of the human monoblastic leukemia cell line, U937. Leuk Res. 1998;22(11):1063.PubMedCrossRefGoogle Scholar
  40. 40.
    Durcova-Hills G, Hajkova P, Sullivan S, Barton S, Surani MA, McLaren A. Influence of sex chromosome constitution on the genomic imprinting of germ cells. Proc Natl Acad Sci USA. 2006;103(30):11184.PubMedCrossRefGoogle Scholar
  41. 41.
    Van Vlierberghe P, Palomero T, Khiabanian H, et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet. 2010;42(4):338.PubMedCrossRefGoogle Scholar
  42. 42.
    Bolufer P, Collado M, Barragan E, et al. The potential effect of gender in combination with common genetic polymorphisms of drug-metabolizing enzymes on the risk of developing acute leukemia. Haematologica. 2007;92(3):308.PubMedCrossRefGoogle Scholar
  43. 43.
    Cartwright RA, Gurney KA, Moorman AV. Sex ratios and the risks of haematological malignancies. Br J Haematol. 2002;118(4):1071.PubMedCrossRefGoogle Scholar
  44. 44.
    Jentsch-Ullrich K, Koenigsmann M, Mohren M, Franke A. Lymphocyte subsets’ reference ranges in an age- and gender-balanced population of 100 healthy adults – a monocentric German study. Clin Immunol. 2005;116(2):192.PubMedCrossRefGoogle Scholar
  45. 45.
    Glaser SL, Clarke CA, Nugent RA, Stearns CB, Dorfman RF. Reproductive factors in Hodgkin’s disease in women. Am J Epidemiol. 2003;158(6):553.PubMedCrossRefGoogle Scholar
  46. 46.
    Pui CH, Boyett JM, Relling MV, et al. Sex differences in prognosis for children with acute lymphoblastic leukemia. J Clin Oncol. 1999;17(3):818.PubMedGoogle Scholar
  47. 47.
    Robak T, Szmigielska-Kaplon A, Wrzesien-Kus A, et al. Acute lymphoblastic leukemia in elderly: the Polish Adult Leukemia Group (PALG) experience. Ann Hematol. 2004;83(4):225.PubMedCrossRefGoogle Scholar
  48. 48.
    Somigliana E, Vigano P, Vignali M. Endometriosis and unexplained recurrent spontaneous abortion: pathological states resulting from aberrant modulation of natural killer cell function? Hum Reprod Update. 1999;5(1):40.PubMedCrossRefGoogle Scholar
  49. 49.
    Allgar VL, Neal RD. Delays in the diagnosis of six cancers: analysis of data from the National Survey of NHS Patients: cancer. Br J Cancer. 2005;92(11):1959.PubMedCrossRefGoogle Scholar
  50. 50.
    A predictive model for aggressive non-Hodgkin’s lymphoma. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N Engl J Med. 1993;329(14):987.Google Scholar
  51. 51.
    Coiffier B, Gisselbrecht C, Vose JM, et al. Prognostic factors in aggressive malignant lymphomas: description and validation of a prognostic index that could identify patients requiring a more intensive therapy. The Groupe d’Etudes des Lymphomes Agressifs. J Clin Oncol. 1991;9(2):211.PubMedGoogle Scholar
  52. 52.
    Osby E, Askling J, Landgren O, Dickman PW, Ekbom A, Bjorkholm M. Parental longevity and prognosis in elderly patients with aggressive non-Hodgkin’s lymphoma. Acta Oncol. 2004;43(3):297.PubMedCrossRefGoogle Scholar
  53. 53.
    Hasselblom S, Ridell B, Nilsson-Ehle H, Andersson PO. The impact of gender, age and patient selection on prognosis and outcome in diffuse large B-cell lymphoma – a population-based study. Leuk Lymphoma. 2007;48(4):736.PubMedCrossRefGoogle Scholar
  54. 54.
    Burkhardt B, Zimmermann M, Oschlies I, et al. The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol. 2005;131(1):39.PubMedCrossRefGoogle Scholar
  55. 55.
    Catovsky D, Matutes E, Dearden C, Osuji N, Brito-Babapulle V. The WHO classification of mature T-cell leukemias. Blood. 2004;104(9):2989.PubMedCrossRefGoogle Scholar
  56. 56.
    Wohl Y, Golan H, Brenner S. Cutaneous lymphomas and association to sex hormones. Skinmed. 2003;2(5):312.PubMedCrossRefGoogle Scholar
  57. 57.
    Gregersen H, Mellemkjaer L, Ibsen JS, Dahlerup JF, Thomassen L, Sorensen HT. The impact of M-component type and immunoglobulin concentration on the risk of malignant transformation in patients with monoclonal gammopathy of undetermined significance. Haematologica. 2001;86(11):1172.PubMedGoogle Scholar
  58. 58.
    Sokal JE, Baccarani M, Tura S, et al. Prognostic discrimination among younger patients with chronic granulocytic leukemia: relevance to bone marrow transplantation. Blood. 1985;66(6):1352.PubMedGoogle Scholar
  59. 59.
    Lee JP, Birnstein E, Masiello D, Yang D, Yang AS. Gender and ethnic differences in chronic myelogenous leukemia prognosis and treatment response: a single-institution retrospective study. J Hematol Oncol. 2009;2:30.PubMedCrossRefGoogle Scholar
  60. 60.
    Berger U, Maywald O, Pfirrmann M, et al. Gender aspects in chronic myeloid leukemia: long-term results from randomized studies. Leukemia. 2005;19(6):984.PubMedCrossRefGoogle Scholar
  61. 61.
    Ribeiro RC, Razzouk BI, Pounds S, Hijiya N, Pui CH, Rubnitz JE. Successive clinical trials for childhood acute myeloid leukemia at St Jude Children’s Research Hospital, from 1980 to 2000. Leukemia. 2005;19(12):2125.PubMedCrossRefGoogle Scholar
  62. 62.
    Bhayat F, Das-Gupta E, Smith C, McKeever T, Hubbard R. The incidence of and mortality from leukaemias in the UK: a general population-based study. BMC Cancer. 2009; 9:252.PubMedCrossRefGoogle Scholar
  63. 63.
    Wong O, Harris F, Yiying W, Hua F. A hospital-based case-control study of acute myeloid leukemia in Shanghai: analysis of personal characteristics, lifestyle and environmental risk factors by subtypes of the WHO classification. Regul Toxicol Pharmacol. 2009;55(3):340.PubMedCrossRefGoogle Scholar
  64. 64.
    Meistrich ML, Shetty G. Hormonal suppression for fertility preservation in males and females. Reproduction. 2008;136(6):691.PubMedCrossRefGoogle Scholar
  65. 65.
    Horning SJ, Hoppe RT, Kaplan HS, Rosenberg SA. Female reproductive potential after treatment for Hodgkin’s disease. N Engl J Med. 1981;304(23):1377.PubMedCrossRefGoogle Scholar
  66. 66.
    Tao T, Del Valle A. Human oocyte and ovarian tissue cryopreservation and its application. J Assist Reprod Genet. 2008;25(7):287.PubMedCrossRefGoogle Scholar
  67. 67.
    Varghese AC, du Plessis SS, Falcone T, Agarwal A. Cryopreservation/transplantation of ovarian tissue and in vitro maturation of follicles and oocytes: challenges for fertility preservation. Reprod Biol Endocrinol. 2008;6:47.PubMedCrossRefGoogle Scholar
  68. 68.
    Pavlidis NA. Coexistence of pregnancy and malignancy. Oncologist. 2002;7(4):279.PubMedGoogle Scholar
  69. 69.
    Azim HA Jr, Pavlidis N, Peccatori FA. Treatment of the pregnant mother with cancer: a systematic review on the use of cytotoxic, endocrine, targeted agents and immunotherapy during pregnancy. Part II: hematological tumors. Cancer Treat Rev. 2010;36(2):110.PubMedCrossRefGoogle Scholar
  70. 70.
    Jones PR, Wilkinson S, Davies PS. A revision of body surface area estimations. Eur J Appl Physiol Occup Physiol. 1985;53(4):376.PubMedCrossRefGoogle Scholar
  71. 71.
    Marosi C. Gender aspects of treatment and drug related toxicity in medical oncology. Wien Med Wochenschr. 2006;156(19–20):534.PubMedCrossRefGoogle Scholar
  72. 72.
    Dobbs NA, Twelves CJ, Gillies H, James CA, Harper PG, Rubens RD. Gender affects doxorubicin pharmacokinetics in patients with normal liver biochemistry. Cancer Chemother Pharmacol. 1995;36(6):473.PubMedCrossRefGoogle Scholar
  73. 73.
    Wade JR, Kelman AW, Kerr DJ, Robert J, Whiting B. Variability in the pharmacokinetics of epirubicin: a population analysis. Cancer Chemother Pharmacol. 1992;29(5):391.PubMedCrossRefGoogle Scholar
  74. 74.
    Halm U, Schumann T, Schiefke I, Witzigmann H, Mossner J, Keim V. Decrease of CA 19–9 during chemotherapy with gemcitabine predicts survival time in patients with advanced pancreatic cancer. Br J Cancer. 2000;82(5):1013.PubMedCrossRefGoogle Scholar
  75. 75.
    Lohr L. Chemotherapy-induced nausea and vomiting. Cancer J. 2008;14(2):85.PubMedCrossRefGoogle Scholar
  76. 76.
    Jann MW, ZumBrunnen TL, Tenjarla SN, Ward ES Jr, Weidler DJ. Relative bioavailability of ondansetron 8-mg oral tablets versus two extemporaneous 16-mg suppositories: formulation and gender differences. Pharmacotherapy. 1998;18(2):288.PubMedGoogle Scholar
  77. 77.
    Tsavaris N, Fountzilas G, Mylonakis N, et al. A randomized comparative study of antiemetic prophylaxis with ondansentron in a single 32-mg loading dose versus 8 mg every 6 h in patients undergoing cisplatin-based chemotherapy. Oncology. 1998;55(6):513.PubMedCrossRefGoogle Scholar
  78. 78.
    Osoba D, Zee B, Pater J, Warr D, Latreille J, Kaizer L. Determinants of postchemotherapy nausea and vomiting in patients with cancer. Quality of Life and Symptom Control Committees of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 1997;15(1):116.PubMedGoogle Scholar
  79. 79.
    Hartvig Honore P. Molecular mechanisms in cytotoxic drug induced fatigue. Ann Pharm Fr. 2010;68(2):76.PubMedCrossRefGoogle Scholar
  80. 80.
    Goldberg SL, Chiang L, Selina N, Hamarman S. Patient perceptions about chemotherapy-induced oral mucositis: implications for primary/secondary prophylaxis strategies. Support Care Cancer. 2004;12(7):526.PubMedCrossRefGoogle Scholar
  81. 81.
    Zalcberg J, Kerr D, Seymour L, Palmer M. Haematological and non-haematological toxicity after 5-fluorouracil and leucovorin in patients with advanced colorectal cancer is significantly associated with gender, increasing age and cycle number Tomudex International Study Group. Eur J Cancer. 1998;34(12):1871.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Clinic for Hematology and OncologyCharité University MedicineBerlinGermany
  2. 2.Department of Hematology, Oncology and Tumor ImmunologyCharité University MedicineBerlinGermany

Personalised recommendations