Advertisement

Oogenesis pp 49-62 | Cite as

Regulation of Quiescence and Activation of Oocyte Growth in Primordial Follicles

  • Deepak AdhikariEmail author
  • Kui Liu
Chapter
  • 1.7k Downloads

Abstract

Once formed, the pool of dormant primordial follicles serves as the source of developing follicles and fertilizable ova for the duration of a female’s reproductive life. Depending upon the species, primordial follicles can remain quiescent for months, years, or even decades, and the highly regulated process of primordial follicle activation ensures the availability of growing follicles throughout the reproductive period. We have recently begun to elucidate the molecular mechanisms underlying the maintenance of follicular quiescence and the activation of primordial follicles, mainly through the use of genetically modified mouse models. Both overactivation as well as the failure of activation of primordial follicles can lead to pathological conditions such as premature ovarian failure (POF) in the experimental models. A thorough understanding of the underlying mechanisms that regulate quiescence and activation of oocyte growth in primordial follicles will have important biological and clinical implications.

Keywords

Activation Quiescence Primordial follicle 

References

  1. 1.
    Borum K. Oogenesis in the mouse. A study of the meiotic prophase. Exp Cell Res. 1961;24:495–507.PubMedCrossRefGoogle Scholar
  2. 2.
    Peters H. The development of the mouse ovary from birth to maturity. Acta Endocrinol (Copenh). 1969;62:98–116.Google Scholar
  3. 3.
    Broekmans FJ, Knauff EAH, te Velde ER, Macklon NS, Fauser BC. Female reproductive ageing: current knowledge and future trends. Trends Endocrinol Metab. 2007;18:58–65.PubMedCrossRefGoogle Scholar
  4. 4.
    Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod. 2008;23:699–708.PubMedCrossRefGoogle Scholar
  5. 5.
    Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428:145–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Johnson J, Bagley J, Skaznik-Wikiel M, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 2005;122:303–15.PubMedCrossRefGoogle Scholar
  7. 7.
    McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21:200–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Elvin JA, Matzuk MM. Mouse models of ovarian failure. Rev Reprod. 1998;3:183–95.PubMedCrossRefGoogle Scholar
  9. 9.
    Vanderhyden B. Molecular basis of ovarian development and function. Front Biosci. 2002;7:d2006–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Richards JS, Russell DL, Ochsner S, et al. Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res. 2002;57:195–220.PubMedCrossRefGoogle Scholar
  11. 11.
    Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296:2178–80.PubMedCrossRefGoogle Scholar
  12. 12.
    Block E. A quantitative morphological investigation of the follicular system in newborn female infants. Acta Anat (Basel). 1953;17:201–6.CrossRefGoogle Scholar
  13. 13.
    Forabosco A, Sforza C, De Pol A, Vizzotto L, Marzona L, Ferrario VF. Morphometric study of the human neonatal ovary. Anat Rec. 1991;231:201–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Tingen CM, Bristol-Gould SK, Kiesewetter SE, Wellington JT, Shea L, Woodruff TK. Prepubertal primordial follicle loss in mice is not due to classical apoptotic pathways. Biol Reprod. 2009;81(1):16–25.PubMedCrossRefGoogle Scholar
  15. 15.
    Hirshfield AN. Development of follicles in the mammalian ovary. Int Rev Cytol. 1991;124:43–101.PubMedCrossRefGoogle Scholar
  16. 16.
    Greenwald GS. Of eggs and follicles. Am J Anat. 1972;135:1–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev. 2009;30:438–64.PubMedCrossRefGoogle Scholar
  18. 18.
    Faddy MJ, Gosden RG. A model conforming the decline in follicle numbers to the age of menopause in women. Hum Reprod. 1996;11:1484–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Peters H. Folliculogenesis in mammals. In: Jones RE, editor. The vertebrate ovary. Comparative biology and evolution. New York: Plenum Press; 1978. p. 121–40.Google Scholar
  20. 20.
    Braw-Tal R, Yossefi S. Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary. J Reprod Fertil. 1997;109:165–71.PubMedCrossRefGoogle Scholar
  21. 21.
    Wandji SA, Srsen V, Voss AK, Eppig JJ, Fortune JE. Initiation in vitro of growth of bovine primordial follicles. Biol Reprod. 1996;55:942–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Wandji SA, Srsen V, Nathanielsz PW, Eppig JJ, Fortune JE. Initiation of growth of baboon primordial follicles in vitro. Hum Reprod. 1997;12:1993–2001.PubMedCrossRefGoogle Scholar
  23. 23.
    Eppig JJ, O’Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod. 1996;54:197–207.PubMedCrossRefGoogle Scholar
  24. 24.
    Fortune JE, Cushman RA, Wahl CM, Kito S. The primordial to primary follicle transition. Mol Cell Endocrinol. 2000;163:53–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Jagarlamudi K, Reddy P, Adhikari D, Liu K. Genetically modified mouse models for premature ovarian failure (POF). Mol Cell Endocrinol. 2010;315(1–2):1–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet. 1997;15:201–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Dierich A, Sairam MR, Monaco L, et al. Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci U S A. 1998;95:13612–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG, Charlton HM. The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology. 2000;141:1795–803.PubMedCrossRefGoogle Scholar
  29. 29.
    Skinner MK. Regulation of primordial follicle assembly and development. Hum Reprod Update. 2005;11:461–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Fortune JE, Yang MY, Muruvi W. In vitro and in vivo regulation of follicular formation and activation in cattle. Reprod Fertil Dev. 2011;23:15–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Arraztoa JA, Zhou J, Marcu D, et al. Identification of genes expressed in primate primordial oocytes. Hum Reprod. 2005;20:476–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Kezele PR, Ague JM, Nilsson E, Skinner MK. Alterations in the ovarian transcriptome during primordial follicle assembly and development. Biol Reprod. 2005;72:241–55.PubMedCrossRefGoogle Scholar
  33. 33.
    Park CE, Cha KY, Kim K, Lee KA. Expression of cell cycle regulatory genes during primordial-primary follicle transition in the mouse ovary. Fertil Steril. 2005;83:410–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Serafica MD, Goto T, Trounson AO. Transcripts from a human primordial follicle cDNA library. Hum Reprod. 2005;20:2074–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Yoon SJ, Kim KH, Chung HM, et al. Gene expression profiling of early follicular development in primordial, primary, and secondary follicles. Fertil Steril. 2006;85:193–203.PubMedCrossRefGoogle Scholar
  36. 36.
    Durlinger AL, Kramer P, Karels B, et al. Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology. 1999;140:5789–96.PubMedCrossRefGoogle Scholar
  37. 37.
    Durlinger AL, Visser JA, Themmen AP. Regulation of ovarian function: the role of anti-Mullerian hormone. Reproduction. 2002;124:601–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Durlinger AL, Gruijters MJ, Kramer P, et al. Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology. 2002;143:1076–84.PubMedCrossRefGoogle Scholar
  39. 39.
    Carlsson IB, Scott JE, Visser JA, Ritvos O, Themmen AP, Hovatta O. Anti-Mullerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro. Hum Reprod. 2006;21:2223–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Nilsson E, Rogers N, Skinner MK. Actions of anti-Mullerian hormone on the ovarian transcriptome to inhibit primordial to primary follicle transition. Reproduction. 2007;134:209–21.PubMedCrossRefGoogle Scholar
  41. 41.
    Cushman RA, Wahl CM, Fortune JE. Bovine ovarian cortical pieces grafted to chick embryonic membranes: a model for studies on the activation of primordial follicles. Hum Reprod. 2002;17:48–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Gigli I, Cushman RA, Wahl CM, Fortune JE. Evidence for a role for anti-Mullerian hormone in the suppression of follicle activation in mouse ovaries and bovine ovarian cortex grafted beneath the chick chorioallantoic membrane. Mol Reprod Dev. 2005;71:480–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Stokoe D. The phosphoinositide 3-kinase pathway and cancer. Expert Rev Mol Med. 2005;7:1–22.PubMedCrossRefGoogle Scholar
  45. 45.
    Reddy P, Liu L, Adhikari D, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008;319:611–3.PubMedCrossRefGoogle Scholar
  46. 46.
    John GB, Gallardo TD, Shirley LJ, Castrillon DH. Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol. 2008;321:197–204.PubMedCrossRefGoogle Scholar
  47. 47.
    Jagarlamudi K, Liu L, Adhikari D, et al. Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation. PLoS One. 2009;4:e6186.PubMedCrossRefGoogle Scholar
  48. 48.
    Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–68.PubMedCrossRefGoogle Scholar
  49. 49.
    Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301:215–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Liu L, Rajareddy S, Reddy P, et al. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development. 2007;134:199–209.PubMedCrossRefGoogle Scholar
  51. 51.
    Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9–22.PubMedCrossRefGoogle Scholar
  52. 52.
    Inoki K, Guan KL. Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment. Hum Mol Genet. 2009;18:R94–100.PubMedCrossRefGoogle Scholar
  53. 53.
    Reddy P, Adhikari D, Zheng W, et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum Mol Genet. 2009;18:2813–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Yang Q, Guan KL. Expanding mTOR signaling. Cell Res. 2007;17:666–81.PubMedCrossRefGoogle Scholar
  55. 55.
    Chong-Kopera H, Inoki K, Li Y, et al. TSC1 stabilizes TSC2 by inhibiting the interaction between TSC2 and the HERC1 ubiquitin ligase. J Biol Chem. 2006;281:8313–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Adhikari D, Zheng W, Shen Y, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet. 2010;19:397–410.PubMedCrossRefGoogle Scholar
  57. 57.
    Adhikari D, Flohr G, Gorre N, et al. Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol Hum Reprod. 2009;15:765–70.PubMedCrossRefGoogle Scholar
  58. 58.
    Adhikari D, Liu K. mTOR signaling in the control of activation of primordial follicles. Cell Cycle. 2010;9:1673–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Fero ML, Rivkin M, Tasch M, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell. 1996;85:733–44.PubMedCrossRefGoogle Scholar
  60. 60.
    Kaldis P. Another piece of the p27Kip1 puzzle. Cell. 2007;128:241–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Rajareddy S, Reddy P, Du C, et al. p27kip1 (cyclin-dependent kinase inhibitor 1B) controls ovarian development by suppressing follicle endowment and activation and promoting follicle atresia in mice. Mol Endocrinol. 2007;21:2189–202.PubMedCrossRefGoogle Scholar
  62. 62.
    Cocquet J, Pailhoux E, Jaubert F, et al. Evolution and expression of FOXL2. J Med Genet. 2002;39:916–21.PubMedCrossRefGoogle Scholar
  63. 63.
    Schmidt D, Ovitt CE, Anlag K, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development. 2004;131:933–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Uda M, Ottolenghi C, Crisponi L, et al. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet. 2004;13:1171–81.PubMedCrossRefGoogle Scholar
  65. 65.
    Pisarska MD, Bae J, Klein C, Hsueh AJ. Forkhead l2 is expressed in the ovary and represses the promoter activity of the steroidogenic acute regulatory gene. Endocrinology. 2004;145:3424–33.PubMedCrossRefGoogle Scholar
  66. 66.
    Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383:531–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol. 1999;13:1018–34.PubMedCrossRefGoogle Scholar
  68. 68.
    Holt JE, Jackson A, Roman SD, Aitken RJ, Koopman P, McLaughlin EA. CXCR4/SDF1 interaction inhibits the primordial to primary follicle transition in the neonatal mouse ovary. Dev Biol. 2006;293:449–60.PubMedCrossRefGoogle Scholar
  69. 69.
    Britt KL, Saunders PK, McPherson SJ, Misso ML, Simpson ER, Findlay JK. Estrogen actions on follicle formation and early follicle development. Biol Reprod. 2004;71:1712–23.PubMedCrossRefGoogle Scholar
  70. 70.
    Kezele P, Skinner MK. Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology. 2003;144:3329–37.PubMedCrossRefGoogle Scholar
  71. 71.
    Yang MY, Fortune JE. The capacity of primordial follicles in fetal bovine ovaries to initiate growth in vitro develops during mid-gestation and is associated with meiotic arrest of oocytes. Biol Reprod. 2008;78:1153–61.PubMedCrossRefGoogle Scholar
  72. 72.
    Albertini DF, Barrett SL. Oocyte-somatic cell communication. Reprod Suppl. 2003;61:49–54.PubMedGoogle Scholar
  73. 73.
    Driancourt MA, Reynaud K, Cortvrindt R, Smitz J. Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod. 2000;5:143–52.PubMedCrossRefGoogle Scholar
  74. 74.
    Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122:829–38.PubMedCrossRefGoogle Scholar
  75. 75.
    Huang EJ, Manova K, Packer AI, Sanchez S, Bachvarova RF, Besmer P. The murine steel panda mutation affects kit ligand expression and growth of early ovarian follicles. Dev Biol. 1993;157:100–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Kuroda H, Terada N, Nakayama H, Matsumoto K, Kitamura Y. Infertility due to growth arrest of ovarian follicles in Sl/Slt mice. Dev Biol. 1988;126:71–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Nilsson E, Skinner MK. Cellular interactions that control primordial follicle development and folliculogenesis. J Soc Gynecol Investig. 2001;8:S17–20.PubMedCrossRefGoogle Scholar
  78. 78.
    Packer AI, Hsu YC, Besmer P, Bachvarova RF. The ligand of the c-kit receptor promotes oocyte growth. Dev Biol. 1994;161:194–205.PubMedCrossRefGoogle Scholar
  79. 79.
    Parrott JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology. 1999;140:4262–71.PubMedCrossRefGoogle Scholar
  80. 80.
    Yoshida H, Takakura N, Kataoka H, Kunisada T, Okamura H, Nishikawa SI. Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development. Dev Biol. 1997;184:122–37.PubMedCrossRefGoogle Scholar
  81. 81.
    Liu L, Rajareddy S, Reddy P, et al. Phosphorylation and inactivation of glycogen synthase kinase-3 by soluble kit ligand in mouse oocytes during early follicular development. J Mol Endocrinol. 2007;38:137–46.PubMedCrossRefGoogle Scholar
  82. 82.
    Reddy P, Shen L, Ren C, et al. Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development. Dev Biol. 2005;281:160–70.PubMedCrossRefGoogle Scholar
  83. 83.
    Liu K, Rajareddy S, Liu L, et al. Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer. Dev Biol. 2006;299:1–11.PubMedCrossRefGoogle Scholar
  84. 84.
    Liu K. Stem cell factor (SCF)-kit mediated phosphatidylinositol 3 (PI3) kinase signaling during mammalian oocyte growth and early follicular development. Front Biosci. 2006;11:126–35.PubMedCrossRefGoogle Scholar
  85. 85.
    Li J, Kawamura K, Cheng Y, et al. Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci U S A. 2010;107:10280–4.PubMedCrossRefGoogle Scholar
  86. 86.
    Yu N, Roy SK. Development of primordial and prenatal follicles from undifferentiated somatic cells and oocytes in the hamster prenatal ovary in vitro: effect of insulin. Biol Reprod. 1999;61:1558–67.PubMedCrossRefGoogle Scholar
  87. 87.
    Kezele PR, Nilsson EE, Skinner MK. Insulin but not insulin-like growth factor-1 promotes the primordial to primary follicle transition. Mol Cell Endocrinol. 2002;192:37–43.PubMedCrossRefGoogle Scholar
  88. 88.
    Pitetti JL, Torre D, Conne B, et al. Insulin receptor and IGF1R are not required for oocyte growth, differentiation, and maturation in mice. Sex Dev. 2009;3:264–72.PubMedCrossRefGoogle Scholar
  89. 89.
    Nilsson E, Parrott JA, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol. 2001;175:123–30.PubMedCrossRefGoogle Scholar
  90. 90.
    Nilsson EE, Skinner MK. Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition. Mol Cell Endocrinol. 2004;214:19–25.PubMedCrossRefGoogle Scholar
  91. 91.
    Kezele P, Nilsson EE, Skinner MK. Keratinocyte growth factor acts as a mesenchymal factor that promotes ovarian primordial to primary follicle transition. Biol Reprod. 2005;73:967–73.PubMedCrossRefGoogle Scholar
  92. 92.
    Nilsson EE, Detzel C, Skinner MK. Platelet-derived growth factor modulates the primordial to primary follicle transition. Reproduction. 2006;131:1007–15.PubMedCrossRefGoogle Scholar
  93. 93.
    Dole G, Nilsson EE, Skinner MK. Glial-derived neurotrophic factor promotes ovarian primordial follicle development and cell-cell interactions during folliculogenesis. Reproduction. 2008;135:671–82.PubMedCrossRefGoogle Scholar
  94. 94.
    Nilsson EE, Kezele P, Skinner MK. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol. 2002;188:65–73.PubMedCrossRefGoogle Scholar
  95. 95.
    Lee WS, Otsuka F, Moore RK, Shimasaki S. Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biol Reprod. 2001;65:994–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Lee WS, Yoon SJ, Yoon TK, et al. Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary. Mol Reprod Dev. 2004;69:159–63.PubMedCrossRefGoogle Scholar
  97. 97.
    Nilsson EE, Skinner MK. Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol Reprod. 2003;69:1265–72.PubMedCrossRefGoogle Scholar
  98. 98.
    Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJ, Hovatta O. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab. 2002;87:316–21.PubMedCrossRefGoogle Scholar
  99. 99.
    Martins FS, Celestino JJ, Saraiva MV, et al. Growth and differentiation factor-9 stimulates activation of goat primordial follicles in vitro and their progression to secondary follicles. Reprod Fertil Dev. 2008;20:916–24.PubMedCrossRefGoogle Scholar
  100. 100.
    Vitt UA, McGee EA, Hayashi M, Hsueh AJ. In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology. 2000;141:3814–20.PubMedCrossRefGoogle Scholar
  101. 101.
    Wang J, Roy SK. Growth differentiation factor-9 and stem cell factor promote primordial follicle formation in the hamster: modulation by follicle-stimulating hormone. Biol Reprod. 2004;70:577–85.PubMedCrossRefGoogle Scholar
  102. 102.
    Tomic D, Brodie SG, Deng C, et al. Smad 3 may regulate follicular growth in the mouse ovary. Biol Reprod. 2002;66:917–23.PubMedCrossRefGoogle Scholar
  103. 103.
    Slot KA, Kastelijn J, Bachelot A, Kelly PA, Binart N, Teerds KJ. Reduced recruitment and survival of primordial and growing follicles in GH receptor-deficient mice. Reproduction. 2006;131:525–32.PubMedCrossRefGoogle Scholar
  104. 104.
    Pangas SA, Choi Y, Ballow DJ, et al. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc Natl Acad Sci U S A. 2006;103:8090–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Choi Y, Yuan D, Rajkovic A. Germ cell-specific transcriptional regulator sohlh2 is essential for early mouse folliculogenesis and oocyte-specific gene expression. Biol Reprod. 2008;79(6):1176–82.PubMedCrossRefGoogle Scholar
  106. 106.
    Toyoda S, Miyazaki T, Miyazaki S, et al. Sohlh2 affects differentiation of KIT positive oocytes and spermatogonia. Dev Biol. 2009;325:238–48.PubMedCrossRefGoogle Scholar
  107. 107.
    Peters H, Byskov AG, Himelstein-Braw R, Faber M. Follicular growth: the basic event in the mouse and human ovary. J Reprod Fertil. 1975;45:559–66.PubMedCrossRefGoogle Scholar
  108. 108.
    Reddy P, Zheng W, Liu K. Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends Endocrinol Metab. 2010;21:96–103.PubMedCrossRefGoogle Scholar
  109. 109.
    De VM, Devroey P, Fauser BC. Primary ovarian insufficiency. Lancet. 2010;376:911–21.CrossRefGoogle Scholar
  110. 110.
    Mora A, Komander D, van Aalten DM, Alessi DR. PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol. 2004;15:161–70.PubMedCrossRefGoogle Scholar
  111. 111.
    Henderson SA, Edwards RG. Chiasma frequency and maternal age in mammals. Nature. 1968;218:22–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Mork L, Maatouk DM, McMahon JA, et al. Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates in mice. Biol Reprod. 2012;86(2):37.PubMedCrossRefGoogle Scholar
  113. 113.
    John GB, Shirley LJ, Gallardo TD, Castrillon DH. Specificity of the requirement for Foxo3 in primordial follicle activation. Reproduction. 2007;133:855–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Medical Biochemistry and BiophysicsUniversity of UmeåUmeåSweden
  2. 2.Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden

Personalised recommendations