Oogenesis pp 329-351 | Cite as

Maternal Diet, Oocyte Nutrition and Metabolism, and Offspring Health

  • Miguel A. Velazquez
  • Tom P. FlemingEmail author


Malnutrition (i.e., undernutrition and overnutrition) is a worldwide phenomenon that can affect mammalian oocyte developmental competence following fertilization, compromising the establishment of pregnancy. However, live birth is usually possible during maternal malnutrition even in extreme cases of undernutrition (i.e., anorexia nervosa) and overnutrition (i.e., morbid obesity). Several epidemiological and clinical studies in humans and experimental animal models have demonstrated that in utero development under nutritional stress can program the development of noncommunicable diseases (NCD) in adult life (e.g., diabetes, metabolic syndrome). Of further significance is the fact that malnutrition can also program the development of NCD in adulthood via changes on oocyte physiology before conception. This chapter focuses on the available evidence supporting this latter hypothesis.


Maternal nutrition Oocyte metabolism Offspring health 



We are grateful for the financial support of the BBSRC, MRC, Gerald Kerkut Trust, and EU FP7 for funding of research in TPF’s laboratory. In addition, we acknowledge the support of the COST Action FA0702 “GEMINI” for the opportunity to discuss and share research ideas among scientists within this area.


  1. 1.
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Bukovsky A, Caudle MR, Svetlikova M, Wimalasena J, Ayala ME, Dominguez R. Oogenesis in adult mammals, including humans. Endocrine. 2005;26:301–16.PubMedCrossRefGoogle Scholar
  3. 3.
    Oktem O, Oktay K. Current knowledge in the renewal capacity of germ cells in the adult ovary. Birth Defects Res C Embryo Today. 2009;87:90–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Tilly JL, Niikura Y, Rueda BR. The current status of evidence for and against postnatal oogenesis in mammals: a case of ovarian optimism versus pessimism? Biol Reprod. 2009;80:2–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Gleicher N, Weghofer A, Barad DH. Defining ovarian reserve to better understand ovarian aging. Reprod Biol Endocrinol. 2011;9:23.PubMedCrossRefGoogle Scholar
  6. 6.
    Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev. 2009;30:438–64.PubMedCrossRefGoogle Scholar
  7. 7.
    Moniruzzaman M, Miyano T. Growth of primordial oocytes in neonatal and adult mammals. J Reprod Dev. 2010;56:559–66.PubMedCrossRefGoogle Scholar
  8. 8.
    van den Hurk R, Zhao J. Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology. 2005;63:1717–51.PubMedCrossRefGoogle Scholar
  9. 9.
    Oktem O, Oktay K. The ovary: anatomy and function throughout human life. Ann N Y Acad Sci. 2008;1127:1–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Edson MA, Nagaraja AK, Matzuk MM. The mammalian ovary from genesis to revelation. Endocr Rev. 2009;30:624–712.PubMedCrossRefGoogle Scholar
  11. 11.
    Hutt KJ, McLaughlin EA, Holland MK. Primordial follicle activation and follicular development in the juvenile rabbit ovary. Cell Tissue Res. 2006;326:809–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Sato E, Kimura N, Yokoo M, Miyake Y, Ikeda J-E. Morphodynamics of ovarian follicles during oogenesis in mice. Microsc Res Tech. 2006;69:427–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Mihm M, Evans ACO. Mechanisms for follicle dominant selection in monovulatory species: a comparison of morphological, endocrine and intraovarian events in cows, mares and women. Reprod Domest Anim. 2008;43 Suppl 2:48–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Schwarz T, Kopyra M, Nowicki J. Physiological mechanisms of ovarian follicular growth in pigs – a review. Acta Vet Hung. 2008;56:369–78.PubMedCrossRefGoogle Scholar
  15. 15.
    Oktem O, Urman B. Understanding follicle growth in vivo. Hum Reprod. 2010;25:2944–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Mihm M, Gangooly S, Muttukrishna S. The normal menstrual cycle in women. Anim Reprod Sci. 2011;124:229–36.PubMedCrossRefGoogle Scholar
  17. 17.
    Izumi T, Sakakida S, Nagai T, Miyamoto H. Allometric study on the relation between the growth of preantral and antral follicles and that of oocytes in bovine ovaries. J Reprod Dev. 2003;49:361–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Rodriguez KF, Farin CE. Gene transcription and regulation of oocyte maturation. Reprod Fertil Dev. 2004;16:55–67.PubMedCrossRefGoogle Scholar
  19. 19.
    Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT. Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J Exp Clin Assist Reprod. 2006;3:2.PubMedCrossRefGoogle Scholar
  20. 20.
    Makabe S, Naguro T, Stallone T. Oocyte-follicle cell interactions during ovarian follicle development, as seen by high resolution scanning and transmission electron microscopy in humans. Microsc Res Tech. 2006;69:436–49.PubMedCrossRefGoogle Scholar
  21. 21.
    Sathananthan AH, Selvaraj K, Girijashankar ML, Ganesh V, Selvaraj P, Trounson AO. From oogonia to mature oocytes: inactivation of the maternal centrosome in humans. Microsc Res Tech. 2006;69:396–407.PubMedCrossRefGoogle Scholar
  22. 22.
    Ferreira EM, Vireque AA, Adona PR, Meirelles FV, Ferriani RA, Navarro PAAS. Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology. 2009;71:836–48.PubMedCrossRefGoogle Scholar
  23. 23.
    Massicotte L, Coenen K, Mourot M, Sirard MA. Maternal housekeeping proteins translated during bovine oocyte maturation and early embryo development. Proteomics. 2006;6:3811–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Maddox-Hyttel P, Svarcova O, Laurincik J. Ribosomal RNA and nucleolar proteins from the oocyte are to some degree used for embryonic nucleolar formation in cattle and pig. Theriogenology. 2007;68 Suppl 1:S63–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Rajyaguru P, Parker R. CGH-1 and the control of maternal mRNAs. Trends Cell Biol. 2009;19:24–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Webb R, Garnsworthy PC, Campbell BK, Hunter MG. Intra-ovarian regulation of follicular development and oocyte competence in farm animals. Theriogenology. 2007;68 Suppl 1:S22–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Memili E, First NL. Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote. 2000;8:87–96.PubMedCrossRefGoogle Scholar
  28. 28.
    Sirard M-A, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006;65:126–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Kang MK, Han SJ. Post-transcriptional and post-translational regulation during mouse oocyte maturation. BMB Rep. 2011;44:147–57.PubMedCrossRefGoogle Scholar
  30. 30.
    Webb R, Garnsworthy PC, Gong J-G, Armstrong DG. Control of follicular growth: local interactions and nutritional influences. J Anim Sci. 2004;82(E-Suppl):E63–74.PubMedGoogle Scholar
  31. 31.
    Burdge GC, Lillycrop KA, Jackson AA. Nutrition in early life, and risk of cancer and metabolic disease: alternative endings in an epigenetic tale? Br J Nutr. 2009;101:619–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Langley-Evans SC. Nutritional programming of disease: unravelling the mechanism. J Anat. 2009;215:36–51.PubMedCrossRefGoogle Scholar
  33. 33.
    McMullen S, Mostyn A. Animal models for the study of the developmental origins of health and disease. Proc Nutr Soc. 2009;68:306–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Watkins AJ, Fleming TP. Blastocyst environment and its influence on offspring cardiovascular health: the heart of the matter. J Anat. 2009;215:52–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Chmurzynska A. Fetal programming: link between early nutrition, DNA methylation, and complex diseases. Nutr Rev. 2010;68:87–98.PubMedCrossRefGoogle Scholar
  36. 36.
    Freeman DJ. Effects of maternal obesity on fetal growth and body composition: implications for programming and future health. Semin Fetal Neonatal Med. 2010;15:113–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Funston RN, Larson DM, Vonnahme KA. Effects of maternal nutrition on conceptus growth and offspring performance: implications for beef cattle production. J Anim Sci. 2010;88(E-Suppl):E205–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Alberda C, Graf A, McCargar L. Malnutrition: etiology, consequences, and assessment of a patient at risk. Best Pract Res Clin Gastroenterol. 2006;20:419–39.PubMedCrossRefGoogle Scholar
  39. 39.
    Meijers JMM, van Bokhorst-de van der Schueren MAE, Schols JMGA, Soeters PB, Halfens RJG. Defining malnutrition: mission or mission impossible? Nutrition. 2010;26:432–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Burchi F, Fanzo J, Frison E. The role of food and nutrition system approaches in tackling hidden hunger. Int J Environ Res Public Health. 2011;8:358–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Loewenberg S. Niger’s hunger crisis: a legacy of lessons unlearned. Lancet. 2010;376:579–81.PubMedCrossRefGoogle Scholar
  42. 42.
    Kristensen J, Vestergaard M, Wisborg K, Kesmodel U, Secher NJ. Pre-pregnancy weight and the risk of stillbirth and neonatal birth. BJOG. 2005;112:403–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Bhattacharya S, Campbell DM, Liston WA, Bhattacharya S. Effect of Body Mass Index on pregnancy outcomes in nulliparous women delivering singleton babies. BMC Public Health. 2007;7:168.PubMedCrossRefGoogle Scholar
  44. 44.
    Halloran DR, Cheng YW, Wall TC, Macones GA, Caughey AB. Effect of maternal weight on postterm delivery. J Perinatol. 2012;32:85–90.Google Scholar
  45. 45.
    Sebastián Manzanares G, Angel Santalla H, Irene Vico Z, López Criado MS, Alicia Pineda L, José Luis Gallo V. Abnormal maternal body mass index and obstetric and neonatal outcome. J Matern Fetal Neonatal Med. 2012;25:308–12.Google Scholar
  46. 46.
    Taylor-Robinson D, Agarwal U, Diggle PJ, Platt MJ, Yoxall B, Alfirevic Z. Quantifying the impact of deprivation on preterm births: a retrospective cohort study. PLoS One. 2011;6:e23163.PubMedCrossRefGoogle Scholar
  47. 47.
    Richards R, Merrill RM, Baksh L. Health behaviors and infant health outcomes in homeless pregnant women in the United States. Pediatrics. 2011;128:438–46.Google Scholar
  48. 48.
    Lawrie Z, Sullivan EA, Davies PSW, Hill RJ. Media Influence on the body image of children and adolescents. Eat Disord. 2006;14:355–64.PubMedCrossRefGoogle Scholar
  49. 49.
    Lam TH, Lee SW, Fung S, Ho SY, Lee PWH, Stewart SM. Sociocultural influences on body dissatisfaction and dieting in Hong Kong girls. Eur Eat Disord Rev. 2009;17:152–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Marques-Vidal P, Ferreira R, Oliveira JM, Paccaud F. Is thinness more prevalent than obesity in Portuguese adolescents? Clin Nutr. 2008;27:531–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Lazzeri G, Rossi S, Pammolli A, Pilato V, Pozzi T, Giacchi MV. Underweight and overweight among children and adolescents in Tuscany (Italy). Prevalence and short-term trends. J Prev Med Hyg. 2009;49:13–21.Google Scholar
  52. 52.
    Grossbard JR, Neighbors C, Larimer ME. Perceived norms for thinness and muscularity among college students: what do men and women really want? Eat Behav. 2011;12:192–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Schneider D. International trends in adolescent nutrition. Soc Sci Med. 2000;51:955–67.PubMedCrossRefGoogle Scholar
  54. 54.
    Hesse-Biber S, Leavy P, Quinn CE, Zoino J. The mass marketing of disordered eating and eating disorders: the social psychology of women, thinness and culture. Women Stud Int Forum. 2006;29:208–24.CrossRefGoogle Scholar
  55. 55.
    Chen X-K, Wen SW, Fleming N, Demissie K, Rhoads GG, Walker M. Teenage pregnancy and adverse birth outcomes: a large population based retrospective cohort study. Int J Epidemiol. 2007;36:368–73.PubMedCrossRefGoogle Scholar
  56. 56.
    Reime B, Schücking BA, Wenzlaff P. Reproductive outcomes in adolescents who had a previous birth or an induced abortion compared to adolescents’ first pregnancies. BMC Pregnancy Childbirth. 2008;8:4.PubMedCrossRefGoogle Scholar
  57. 57.
    Santelli JS, Melnikas AJ. Teen fertility in transition: recent and historic trends in the United States. Annu Rev Public Health. 2010;31:371–83.PubMedCrossRefGoogle Scholar
  58. 58.
    Tanne JH. Rise in the US teen pregnancies and births is “deeply troubling”. BMJ. 2010;340:c638.PubMedCrossRefGoogle Scholar
  59. 59.
    Mazer-Poline C, Fornari V. Anorexia nervosa and pregnancy: having a baby when you are dying to be thin-case report and proposed treatment guidelines. Int J Eat Disord. 2009;42:382–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Siega-Riz AM, Von Holle A, Haugen M, Meltzer HM, Hamer R, Torgersen L, Berg CK, Reichborn-Kjennerud T, Bulik CM. Gestational weight gain of women with eating disorders in the Norwegian pregnancy cohort. Int J Eat Disord. 2011;44:428–34.PubMedCrossRefGoogle Scholar
  61. 61.
    Bulik CM, Hoffman ER, Von Holle A, Torgersen L, Stoltenberg C, Reichborn-Kjennerud T. Unplanned pregnancy in women with anorexia nervosa. Obstet Gynecol. 2010;116:1136–40.PubMedCrossRefGoogle Scholar
  62. 62.
    Fenichel RM, Warren WP. Anorexia, bulimia, and the athletic triad: evaluation and management. Curr Osteoporos Rep. 2007;5:160–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Armstrong JD, Britt JH. Nutritionally-induced anestrus in gilts: metabolic and endocrine changes associated with cessation and resumption of estrous cycles. J Anim Sci. 1987;65:508–23.PubMedGoogle Scholar
  64. 64.
    Bossis I, Wettemann RP, Welty SD, Vizcarra J, Spicer LJ. Nutritionally induced anovulation in beef Heifers: ovarian and endocrine function during realimentation and resumption of ovulation. Biol Reprod. 2000;62:1436–44.PubMedCrossRefGoogle Scholar
  65. 65.
    Bossis I, Wettemann RP, Welty SD, Vizcarra JA, Spicer LJ, Diskin MG. Nutritionally induced anovulation in beef heifers: ovarian and endocrine function preceding cessation of ovulation. J Anim Sci. 1999;77:1536–46.PubMedGoogle Scholar
  66. 66.
    Yan J, Zhou B, Yang J, Tai P, Chen X, Zhang H, Zhang M, Xia G. Glucose can reverse the effects of acute fasting on mouse ovulation and oocyte maturation. Reprod Fertil Dev. 2008;20:703–12.PubMedCrossRefGoogle Scholar
  67. 67.
    Micali N, Simonoff E, Treasure J. Risk of major adverse perinatal outcomes in women with eating disorders. Br J Psychiatry. 2007;190:255–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Abecia JA, Lozano JM, Forcada F, Zarazaga L. Effect of level of dietary energy and protein on embryo survival and progesterone production on day eight of pregnancy in Rasa Aragonesa ewes. Anim Reprod Sci. 1997;48:209–18.PubMedCrossRefGoogle Scholar
  69. 69.
    Borowczyk E, Caton JS, Redmer DA, Bilski JJ, Weigl RM, Vonnahme KA, Borowicz PP, Kirsch JD, Kraft KC, Reynolds LP, Grazul-Bilska AT. Effects of plane of nutrition on vitro fertilization and early embryonic development in sheep. J Anim Sci. 2006;84:1593–9.PubMedGoogle Scholar
  70. 70.
    Mitchell M, Schulz SL, Armstrong DT, Lane M. Metabolic and mitochondrial dysfunction in early mouse embryos following maternal dietary protein intervention. Biol Reprod. 2009;80:622–30.PubMedCrossRefGoogle Scholar
  71. 71.
    Etienne M, Camous S, Cuvillier A. Effets de restrictions alimentaires pendant la croissance des truies sur leur maturité sexuelle et leur reproduction ultérieure [Effects of feed restrictions during the growth of sows on their sexual maturity and subsequent reproduction]. Reprod Nutr Dev. 1983;23:309–19.PubMedCrossRefGoogle Scholar
  72. 72.
    Graham JR, Ray LJ, Stover SK, Salmen JJ, Gardiner CS. Effects of nutrient intake and number of oestrous cycles on in vitro development of preimplantation pig embryos. J Reprod Fertil. 1999;117:35–40.PubMedCrossRefGoogle Scholar
  73. 73.
    Novak S, Almeida FRCL, Cosgrove JR, Dixon WT, Foxcroft GR. Effect of pre- and postmating nutritional manipulation on plasma progesterone, blastocyst development, and the oviductal environment during early pregnancy in gilts. J Anim Sci. 2003;81:772–83.PubMedGoogle Scholar
  74. 74.
    Patterson JL, Smit MN, Novak S, Wellen AP, Foxcroft GR. Restricted feed intake in lactating primiparous sows. I. Effects on sow metabolic state and subsequent reproductive performance. Reprod Fertil Dev. 2011;23:889–98.PubMedCrossRefGoogle Scholar
  75. 75.
    García-García RM, Rebollar PG, Arias-Álvarez M, Sakr OG, Bermejo-Álvarez P, Brecchia G, Gutierrez-Adan A, Zerani M, Boiti C, Lorenzo PL. Acute fasting before conception affects metabolic and endocrine status without impacting follicle and oocyte development and embryo gene expression in the rabbit. Reprod Fertil Dev. 2011;23:759–68.PubMedCrossRefGoogle Scholar
  76. 76.
    Roche JR, Friggens NC, Kay JK, Fisher MW, Stafford KJ, Berry DP. Invited review: body condition score and its association with dairy cow productivity, health, and welfare. J Dairy Sci. 2009;92:5769–801.PubMedCrossRefGoogle Scholar
  77. 77.
    Osgerby JC, Gadd TS, Wathes DC. Effect of maternal body condition on placental and fetal growth and the insulin-like growth factor axis in Dorset ewes. Reproduction. 2003;125:717–31.PubMedCrossRefGoogle Scholar
  78. 78.
    Rivas-Muñoz R, Carrillo E, Rodriguez-Martinez R, Leyva C, Mellado M, Véliz FG. Effect of body condition score of does and use of bucks subjected to added artificial light on estrus response of Alpine goats. Trop Anim Health Prod. 2010;42:1285–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Salak-Johnson JL, Niekamp SR, Rodriguez-Zas SL, Ellis M, Curtis SE. Space allowance for dry, pregnant sows in pens: body condition, skin lesions, and performance. J Anim Sci. 2007;85:1758–69.PubMedCrossRefGoogle Scholar
  80. 80.
    Vecchi I, Sabbioni A, Bigliardi E, Morini G, Ferrari L, Di Ciommo F, Superchi P, Parmigiani E. Relationship between body fat and body condition score and their effects on estrous cycles of the Standardbred maiden mare. Vet Res Commun. 2010;34 Suppl 1:S41–5.PubMedCrossRefGoogle Scholar
  81. 81.
    German AJ, Holden SL, Bissot T, Morris PJ, Biourge V. Use of starting condition score to estimate changes in body weight and composition during weight loss in obese dogs. Res Vet Sci. 2009;87:249–54.PubMedCrossRefGoogle Scholar
  82. 82.
    Bjornvad CR, Nielsen DH, Armstrong PJ, McEvoy F, Hoelmkjaer KM, Jensen KS, Pedersen GF, Kristensen AT. Evaluation of a nine-point body condition scoring system in physically inactive pet cats. Am J Vet Res. 2011;72:433–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Allbrahim RM, Crowe MA, Duffy P, O’Grady L, Beltman ME, Mulligan FJ. The effect of body condition at calving and supplementation with Saccharomyces cerevisiae on energy status and some reproductive parameters in early lactation dairy cows. Anim Reprod Sci. 2010;121:63–71.CrossRefGoogle Scholar
  84. 84.
    Wathes DC, Fenwick M, Cheng Z, Bourne N, Llewellyn S, Morris DG, Kenny D, Murphy J, Fitzpatrick R. Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow. Theriogenology. 2007;68 Suppl 1:S232–41.PubMedCrossRefGoogle Scholar
  85. 85.
    Walters AH, Pryor AW, Bailey TL, Pearson RE, Gwazdauskas FC. Milk yield, energy balance, hormone, follicular and oocyte measures in early and mid-lactation Holstein cows. Theriogenology. 2002;57:949–61.PubMedCrossRefGoogle Scholar
  86. 86.
    Snijders SE, Dillon P, O’Callaghan D, Boland MP. Effect of genetic merit, milk yield, body condition and lactation number on in vitro oocyte development in dairy cows. Theriogenology. 2000;53:981–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Dulloo AG, Jacquet J, Solinas G, Montani J-P, Schutz Y. Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes. 2010;34 Suppl 2:S4–17.CrossRefGoogle Scholar
  88. 88.
    Purcell SH, Moley KH. The impact of obesity on egg quality. J Assist Reprod Genet. 2011;28:517–24.PubMedCrossRefGoogle Scholar
  89. 89.
    Wittemer C, Ohl J, Bailly M, Bettahar-Lebugle K, Nisand I. Does body mass index of infertile women have an impact on IVF procedure and outcome? J Assist Reprod Genet. 2000;17:547–52.PubMedCrossRefGoogle Scholar
  90. 90.
    Lashen H, Ledger W, López Bernal A, Barlow D. Extremes of body mass do not adversely affect the outcome of superovulation and in-vitro fertilization. Hum Reprod. 1999;14:712–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Fedorcsáck P, Dale PO, Storeng R, Ertzeid G, Bjercke S, Oldereid N, Omland AK, Åbyholm T, Tanbo T. Impact of overweight and underweight on assisted reproduction treatment. Hum Reprod. 2004;19:2523–8.CrossRefGoogle Scholar
  92. 92.
    Thum MY, El-Sheikhah A, Faris R, Parikh J, Wren M, Ogunyemi T, Gafar A, Abdalla H. The influence of body mass index to in-vitro fertilisation treatment outcome, risk of miscarriage and pregnancy outcome. J Obstet Gynaecol. 2007;27:699–702.PubMedCrossRefGoogle Scholar
  93. 93.
    Lenoble C, Guibert J, Lefebvre G, Dommergues M. Influence du poids sur les taux de succès en fécondation in vitro [Effect of women’s weight on the success rate of in vitro fertilization]. Gynecol Obstet Fertil. 2008;36:940–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Bellver J, Ayllón Y, Ferrando M, Melo M, Goyri E, Pellicer A, Remohí J, Meseguer M. Fermale obesity impairs in vitro fertilization outcome without affecting embryo quality. Fertil Steril. 2010;93:447–54.PubMedCrossRefGoogle Scholar
  95. 95.
    Shalom-Paz E, Marzal A, Wiser A, Almog B, Reinblatt S, Tulandi T, Holzer H. Effects of different body mass indices on in vitro maturation in women with polycystic ovaries. Fertil Steril. 2011;96:336–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Singh N, Gupta P, Mittal S, Malhotra N. Correlation of body mass index with outcome of in vitro fertilization in a developing country. Arch Gynecol Obstet. 2012;285:259–63.Google Scholar
  97. 97.
    Shah DK, Missmer SA, Berry KF, Racowsky C, Ginsburg ES. Effect of obesity on oocyte and embryo quality in women undergoing in vitro fertilization. Obstet Gynecol. 2011;118:63–70.PubMedCrossRefGoogle Scholar
  98. 98.
    Li Y, Yang D, Zhang Q. Impact of overweight and underweight on IVF treatment in Chinese women. Gynecol Endocrinol. 2010;26:416–22.PubMedCrossRefGoogle Scholar
  99. 99.
    Pinborg A, Gaarslev C, Hougaard CO, Nyboe Andersen A, Andersen PK, Boivin J, Schmidt L. Influence of female bodyweight on IVF outcome: a longitudinal multicentre cohort study of 487 infertile couples. Reprod Biomed Online. 2011;23:490–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Haslam DW, James WPT. Obesity. Lancet. 2005;366:1197–209.PubMedCrossRefGoogle Scholar
  101. 101.
    Kelly T, Yang W, Chen C-S, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32:1431–7.CrossRefGoogle Scholar
  102. 102.
    Cuevas A, Alvarez V, Carrasco F. Epidemic of metabolic syndrome in Latin America. Curr Opin Endocrinol Diabetes Obes. 2011;18:134–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Márquez-Sandoval F, Macedo-Ojeda G, Viramontes-Hörner D, Fernández Ballart J, Salas Salvadó J, Vizmanos B. The prevalence of metabolic syndrome in Latin America: a systematic review. Public Health Nutr. 2011;14:1702–13.PubMedCrossRefGoogle Scholar
  104. 104.
    Musaiger AO. Overweight and obesity in Eastern Mediterranean region: prevalence and possible causes. J Obes. 2011;2011:407237.PubMedGoogle Scholar
  105. 105.
    World Health Organization. Preventing chronic disease: a vital investment. Geneva: WHO; 2005.Google Scholar
  106. 106.
    Kuchenbecker WKH, Groen H, Zijlstra TM, Bolster JHT, Slart RHJ, van der Jagt EJ, Muller Kobold AC, Wolffenbuttel BHR, Land JA, Hoek A. The subcutaneous abdominal fat and not the intraabdominal fat compartment is associated with anovulation in women with obesity and infertility. J Clin Endocrinol Metab. 2010;95:2107–12.PubMedCrossRefGoogle Scholar
  107. 107.
    Wu LL-Y, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ, Robker RL. High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology. 2010;151:5438–45.PubMedCrossRefGoogle Scholar
  108. 108.
    Mamun AA, Callaway LK, O’Callaghan MJ, Williams GM, Najman JM, Alati R, Clavarino A, Lawlor DA. Associations of maternal prepregnancy obesity and excess pregnancy weight gains with adverse pregnancy outcomes and length of hospital stay. BMC Pregnancy Childbirth. 2011;11:62.PubMedCrossRefGoogle Scholar
  109. 109.
    Souter I, Baltagi LM, Kuleta D, Meeker JD, Petrozza JC. Women, weight, and fertility: the effect of body mass index on the outcome of superovulation/intrauterine insemination cycles. Fertil Steril. 2011;95:1042–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Cnattingius S, Bergström R, Lipworth L, Kramer MS. Prepregnancy weight and the risk of adverse pregnancy outcomes. N Engl J Med. 1998;338:147–52.PubMedCrossRefGoogle Scholar
  111. 111.
    Sebire NJ, Jolly M, Harris JP, Wadsworth J, Joffe M, Beard RW, Regan L, Robinson S. Maternal obesity and pregnancy outcome: a study of 287,213 pregnancies in London. Int J Obes Relat Metab Disord. 2001;25:1175–82.PubMedCrossRefGoogle Scholar
  112. 112.
    Nohr EA, Bech BH, Davies MJ, Frydenberg M, Henriksen TB, Olsen J. Prepregnancy obesity and fetal death: a study within the Danish National Birth Cohort. Obstet Gynecol. 2005;106:250–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Adamiak SJ, Mackie K, Watt RG, Webb R, Sinclair KD. Impact of nutrition on oocyte quality: cumulative effects of body composition and diet leading to hyperinsulinemia in cattle. Biol Reprod. 2005;73:918–26.PubMedCrossRefGoogle Scholar
  114. 114.
    Adamiak SJ, Powell K, Rooke JA, Webb R, Sinclair KD. Body composition, dietary carbohydrates and fatty acids determine post-fertilisation development of bovine oocytes in vitro. Reproduction. 2006;131: 247–58.PubMedCrossRefGoogle Scholar
  115. 115.
    Freret S, Grimard B, Ponter AA, Joly C, Ponsart C, Humblot P. Reduction of body-weight gain enhances in vitro embryo production in overfed superovulated dairy heifers. Reproduction. 2006;131:783–94.PubMedCrossRefGoogle Scholar
  116. 116.
    Minge CE, Bennet BD, Norman RJ, Robker RL. Peroxisome proliferator-activated receptor- agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality. Endocrinology. 2008;149:2646–56.PubMedCrossRefGoogle Scholar
  117. 117.
    Wakefield SL, Lane M, Schulz SJ, Hebart ML, Thompson JG, Mitchell M. Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse. Am J Physiol Endocrinol Metab. 2008;294:E425–34.PubMedCrossRefGoogle Scholar
  118. 118.
    Jungheim ES, Macones GA, Odem RR, Patterson BW, Lanzendorf SE, Ratts VS, Moley KH. Associations between free fatty acids, cumulus oocyte complex morphology and ovarian function during in vitro fertilization. Fertil Steril. 2011;95:1970–4.PubMedCrossRefGoogle Scholar
  119. 119.
    Velazquez MA. The role of nutritional supplementation on the outcome of superovulation in cattle. Anim Reprod Sci. 2011;126:1–10.PubMedCrossRefGoogle Scholar
  120. 120.
    Sinclair KD, Kuran M, Gebbie FE, Webb R, McEvoy TG. Nitrogen metabolism and fertility in cattle: development of oocytes recovered from heifers offered diets differing in their rate of nitrogen release in the rumen. J Anim Sci. 2000;78:2670–80.PubMedGoogle Scholar
  121. 121.
    Santos P, Marques A, Antunes G, Chaveiro A, Andrade M, Borba A, Moreira da Silva F. Effects of plasma urea nitrogen levels on the bovine oocyte ability to develop after in vitro fertilization. Reprod Domest Anim. 2009;44:783–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Ferreira FA, Gomez RGG, Joaquim DC, Watanabe YF, de Castro e Paula LA, Binelli M, Rodrigues PHM. Short-term urea feeding decreases in vitro hatching of bovine blastocysts. Theriogenology. 2011;76:312–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Jenkins DJA, Kendall CWC, Vidgen E, Augustin LSA, van Erk M, Geelen A, Parker T, Faulkner D, Vuksan V, Josse RG, Leiter LA, Connelly PW. High protein diets in hyperlipidemia: effect of wheat gluten on serum lipids, uric acid, and renal function. Am J Clin Nutr. 2001;74:57–63.PubMedGoogle Scholar
  124. 124.
    Józwik M, Józwik M, Teng C, Battaglia FC. Amino acid, ammonia and urea concentrations in human pre-ovulatory ovarian follicular fluid. Hum Reprod. 2006;21:2776–82.PubMedCrossRefGoogle Scholar
  125. 125.
    Toscani MK, Mario FM, Radavelli-Bagatini S, Wiltgen D, Matos MC, Spritzer PM. Effect of high-protein or normal-protein diet on weight loss, body composition, hormone, and metabolic profile in southern Brazilian women with the polycystic ovary syndrome: a randomized study. Gynecol Endocrinol. 2011;27:925–30.PubMedCrossRefGoogle Scholar
  126. 126.
    Lozano JM, Lonergan P, Boland MP, O’Callaghan D. Influence of nutrition on the effectiveness of superovulation programmes in ewes: effect on oocyte quality and post-fertilization development. Reproduction. 2003;125:543–53.PubMedCrossRefGoogle Scholar
  127. 127.
    Mantovani R, Enright WJ, Keane MG, Roche JF, Boland MP. Effect of nutrition on follicle stimulating hormone (FSH) on superovulatory response in beef heifers. In: Proceedings of the 9th A.E.T.E. meeting, Lyon; 10–11 September 1993. p. 234.Google Scholar
  128. 128.
    Yaakub H, O’Callaghan D, Boland MP. Effect of roughage type and concentrate supplementation on follicle numbers and in vitro fertilisation and development of oocytes recovered from beef heifers. Anim Reprod Sci. 1999;55:1–12.PubMedCrossRefGoogle Scholar
  129. 129.
    McEvoy TG, Robinson JJ, Aitken RP, Findlay PA, Palmer RM, Robertson IS. Dietary-induced suppression of pre-ovulatory progesterone concentrations in superovulated ewes impairs the subsequent in vivo and in vitro development of their ova. Anim Reprod Sci. 1995;39:89–107.CrossRefGoogle Scholar
  130. 130.
    Papadopoulos S, Lonergan P, Gath V, Quinn KM, Evans AC, O’Callaghan D, Boland MP. Effect of diet quantity and urea supplementation on oocyte and embryo quality in sheep. Theriogenology. 2001;55:1059–69.PubMedCrossRefGoogle Scholar
  131. 131.
    Vázquez MI, Forcada F, Casao A, Abecia JA, Sosa C, Palacín I. Undernutrition and exogenous melatonin can affect the in vitro developmental competence of ovine oocytes on a seasonal basis. Reprod Domest Anim. 2010;45:677–84.PubMedGoogle Scholar
  132. 132.
    Egerszegi I, Hazeleger W, Rátky J, Sarlós P, Kemp B, Bouwman E, Solti L, Brüssow KP. Superovulatory ovarian response in Mangalica gilts is not influenced by feeding level. Reprod Domest Anim. 2007;42:441–4.PubMedCrossRefGoogle Scholar
  133. 133.
    Yang H, Foxcroft GR, Pettigrew JE, Johnston LJ, Shurson GC, Costa AN, Zak LJ. Impact of dietary lysine intake during lactation on follicular development and oocyte maturation after weaning in primiparous sows. J Anim Sci. 2000;78:993–1000.PubMedGoogle Scholar
  134. 134.
    Ferguson EM, Slevin J, Edwards SA, Hunter MG, Ashworth CJ. Effect of alterations in the quantity and composition of the pre-mating diet on embryo survival and foetal growth in the pig. Anim Reprod Sci. 2006;96:89–103.PubMedCrossRefGoogle Scholar
  135. 135.
    Ashworth CJ, Antipatis C, Beattie L. Effects of pre- and post-mating nutritional status on hepatic function, progesterone concentration, uterine protein secretion and embryo survival in Meishan pigs. Reprod Fertil Dev. 1999;11:67–73.PubMedCrossRefGoogle Scholar
  136. 136.
    Almeida FR, Kirkwood RN, Aherne FX, Foxcroft GR. Consequences of different patterns of feed intake during the estrous cycle in gilts on subsequent fertility. J Anim Sci. 2000;78:1556–63.PubMedGoogle Scholar
  137. 137.
    Ferguson EM, Ashworth CJ, Edwards SA, Hawkins N, Hepburn N, Hunter MG. Effect of different nutritional regimes before ovulation on plasma concentrations of metabolic and reproductive hormones and oocyte maturation in gilts. Reproduction. 2003;126:61–71.PubMedCrossRefGoogle Scholar
  138. 138.
    van Wettere WHEJ, Mitchell M, Revell DK, Hughes PE. Nutritional restriction of pre-pubertal liveweight gain impairs ovarian follicle growth and oocyte developmental competence of replacement gilts. Theriogenology. 2011;75:1301–10.PubMedCrossRefGoogle Scholar
  139. 139.
    Zhou DS, Fang ZF, Wu D, Zhuo Y, Xu SY, Wang YZ, Zhou P, Lin Y. Dietary energy source and feeding levels during the rearing period affect ovarian follicular development and oocyte maturation in gilts. Theriogenology. 2010;74:202–11.PubMedCrossRefGoogle Scholar
  140. 140.
    Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Li XL, Satterfield MC, Spencer TE. Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci. 2010;88(E-Suppl):E195–204.PubMedCrossRefGoogle Scholar
  141. 141.
    Ashworth CJ, Toma LM, Hunter MG. Nutritional effects on oocyte and embryo development in mammals: implications for reproductive efficiency and environmental sustainability. Philos Trans R Soc Lond B Biol Sci. 2009;364:3351–61.PubMedCrossRefGoogle Scholar
  142. 142.
    Awasthi H, Saravia F, Rodríguez-Martínez H, Båge R. Do cytoplasmic lipid droplets accumulate in immature oocytes from over-conditioned repeat breeder dairy heifers? Reprod Domest Anim. 2010;45:e194–8.PubMedGoogle Scholar
  143. 143.
    Salha O, Dada T, Sharma V. Influence of body mass index and self-administration of hCG on the outcome of IVF cycles: a prospective cohort study. Hum Fertil. 2001;4:37–42.CrossRefGoogle Scholar
  144. 144.
    Bellver J, Rossal LP, Bosch E, Zúñiga A, Corona JT, Meléndez F, Gómez E, Simón C, Remohí J, Pellicer A. Obesity and the risk of spontaneous abortion after oocyte donation. Fertil Steril. 2003;79:1136–40.PubMedCrossRefGoogle Scholar
  145. 145.
    Ferreira RC, Halpern G, Figueira RCS, Braga DPAF, Iaconelli Jr A, Borges Jr E. Physical activity, obesity and eating habits can influence assisted reproduction outcomes. Womens Health. 2010;6:517–24.Google Scholar
  146. 146.
    Dessolle L, Fréour T, Ravel C, Jean M, Colombel A, Daraï E, Barrière P. Predictive factors of healthy term birth after single blastocyst transfer. Hum Reprod. 2011;26:1220–6.PubMedCrossRefGoogle Scholar
  147. 147.
    Petanovski Z, Dimitrov G, Ajdin B, Hadzi-Lega M, Sotirovska V, Matevski V, Stojkovska S, Saltirovski S, Suslevski D, Petanovska E. Impact of body mass index (BMI) and age on the outcome of the IVF process. Prilozi. 2011;32:155–71.PubMedGoogle Scholar
  148. 148.
    Rittenberg V, Seshadri S, Sunkara SK, Sobaleva S, Oteng-Ntim E, El-Toukhy T. Effect of body mass index on IVF treatment outcome: an updated systematic review and meta-analysis. Reprod Biomed Online. 2011;23:421–39.PubMedCrossRefGoogle Scholar
  149. 149.
    Esinler I, Bozdag G, Yarali H. Impact of isolated obesity on ICSI outcome. Reprod Biomed Online. 2008;17:583–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Matalliotakis I, Cakmak H, Sakkas D, Mahutte N, Koumantakis G, Arici A. Impact of body mass index on IVF and ICSI outcome: a retrospective study. Reprod Biomed Online. 2008;16:778–83.PubMedCrossRefGoogle Scholar
  151. 151.
    Sathya A, Balasubramanyam S, Gupta S, Verma T. Effect of body mass index on in vitro fertilization outcomes in women. J Hum Reprod Sci. 2010;3:135–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Zhang D, Zhu Y, Gao H, Zhou B, Zhang R, Wang T, Ding G, Qu F, Huang H, Lu X. Overweight and obesity negatively affect the outcomes of ovarian stimulation and in vitro fertilisation: a cohort study of 2628 Chinese women. Gynecol Endocrinol. 2010;26:325–32.PubMedCrossRefGoogle Scholar
  153. 153.
    Vilarino FL, Christofolini DM, Rodrigues D, De Souza AMB, Christofolini J, Bianco B, Barbosa CP. Body mass index and infertility: is there a correlation with human reproduction outcomes? Gynecol Endocrinol. 2011;27:232–6.PubMedCrossRefGoogle Scholar
  154. 154.
    Styne-Cross A, Elkind-Hirsch K, Scott RT. Obesity does not impact implantation rates or pregnancy outcome in women attempting conception through oocyte donation. Fertil Steril. 2005;83:1629–34.CrossRefGoogle Scholar
  155. 155.
    Farhi J, Ben-Haroush A, Sapir O, Fisch B, Ashkenazi J. High-quality embryos retain their implantation capability in overweight women. Reprod Biomed Online. 2010;21:706–11.PubMedCrossRefGoogle Scholar
  156. 156.
    Bellver J, Melo MA, Bosch E, Serra V, Remohí J, Pellicer A. Obesity and poor reproductive outcome: the potential role of the endometrium. Fertil Steril. 2007;88:446–51.PubMedCrossRefGoogle Scholar
  157. 157.
    Van Soom A, Mateusen B, Leroy J, De Kruif A. Assessment of mammalian embryo quality: what can we learn from embryo morphology? Reprod Biomed Online. 2003;7:664–70.PubMedCrossRefGoogle Scholar
  158. 158.
    Santos-Filho E, Noble JA, Wells D. A review on automatic analysis of human embryo microscope images. Open Biomed Eng J. 2010;4:170–7.CrossRefGoogle Scholar
  159. 159.
    Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR, McConnell J. Maternal diet-induced obesity alters mitochondria activity and redox status in mouse oocytes and zygotes. PLoS One. 2010;5:e10074.PubMedCrossRefGoogle Scholar
  160. 160.
    Rizos D, Carter F, Besenfelder F, Havlicek V, Lonergan P. Contribution of the female reproductive tract to low fertility in postpartum lactating dairy cows. J Dairy Sci. 2010;93:1022–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Velazquez MA, Hadeler KG, Herrmann D, Kues WA, Ulbrich S, Meyer HHD, Remy B, Beckers J-F, Sauerwein H, Niemann H. In vivo oocyte developmental competence is reduced in lean but not in obese superovulated dairy cows after intraovarian administration of IGF1. Reproduction. 2011;142:41–52.PubMedCrossRefGoogle Scholar
  162. 162.
    Leese HJ, Hugentobler SA, Gray SM, Morris DG, Sturmey RG, Whitear SL, Sreenan JM. Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reprod Fertil Dev. 2008;20:1–8.PubMedCrossRefGoogle Scholar
  163. 163.
    Avilés M, Gutiérrez-Adán A, Coy P. Oviductal secretions: will they be key factors for the future ARTs? Mol Hum Reprod. 2010;16:896–906.PubMedCrossRefGoogle Scholar
  164. 164.
    Velazquez MA, Parrilla I, Van Soom A, Verberckmoes S, Kues W, Niemann H. Sampling techniques for oviductal and uterine luminal fluid in cattle. Theriogenology. 2010;73:758–67.PubMedCrossRefGoogle Scholar
  165. 165.
    Bazer FW, Spencer TE, Johnson GA, Burghardt RC. Uterine receptivity to implantation of blastocysts in mammals. Front Biosci (Schol Ed). 2011;3:745–67.CrossRefGoogle Scholar
  166. 166.
    Frolova AI, Moley KH. Glucose transporters in the uterus: an analysis of tissue distribution and proposed physiological roles. Reproduction. 2011;142:211–20.PubMedCrossRefGoogle Scholar
  167. 167.
    Maheshwari A, Stofberg L, Bhattacharya S. Effect of overweight and obesity on assisted reproductive technology – a systematic review. Hum Reprod Update. 2007;13:433–44.PubMedCrossRefGoogle Scholar
  168. 168.
    Metwally M, Ong KJ, Ledger WL, Li TC. Does body mass index increase the risk of miscarriage after spontaneous and assisted conception? A meta-analysis of the evidence. Fertil Steril. 2008;90:714–26.PubMedCrossRefGoogle Scholar
  169. 169.
    Lord J, Wilkin T. Polycystic ovary syndrome and fat distribution: the central issue? Hum Fertil. 2002;5:67–71.CrossRefGoogle Scholar
  170. 170.
    Kupka MS, Gnoth C, Buehler K, Dahncke W, Kruessel J-S. Impact of female and male obesity on IVF/ICSI: results of 700,000 ART-cycles in Germany. Gynecol Endocrinol. 2011;27:144–9.PubMedCrossRefGoogle Scholar
  171. 171.
    Knight M, Kurinczuk JJ, Spark P, Brocklehurst P. UK Obstetric Surveillance System. Extreme obesity in pregnancy in the United Kingdom. Obstet Gynecol. 2010;115:989–97.PubMedCrossRefGoogle Scholar
  172. 172.
    Garabedian MJ, Williams CM, Pearce CF, Lain KY, Hansen WF. Extreme morbid obesity and labor outcome in nulliparous women at term. Am J Perinatol. 2011;28:729–34.PubMedCrossRefGoogle Scholar
  173. 173.
    Oliveira JF, Neves JP, Moraes JC, Gonçalves PB, Bahr JM, Hernandez AG, Costa LF. Follicular development and steroid concentrations in cows with different levels of fertility raised under nutritional stress. Anim Reprod Sci. 2002;73:1–10.PubMedCrossRefGoogle Scholar
  174. 174.
    Gluckman PD, Hanson MA, Pinal C. The developmental origins of adult disease. Matern Child Nutr. 2005;1:130–41.PubMedCrossRefGoogle Scholar
  175. 175.
    McMillen IC, MacLaughlin SM, Muhlhausler BS, Gentili S, Duffield JL, Morrison JL. Developmental origins of adult health and disease: the role of periconceptional and foetal nutrition. Basic Clin Pharmacol Toxicol. 2008;102:82–9.PubMedCrossRefGoogle Scholar
  176. 176.
    Langley-Evans SC, McMullen S. Developmental origins of health and disease. Med Princ Pract. 2010;19:87–98.PubMedCrossRefGoogle Scholar
  177. 177.
    Zhang S, Rattanatray L, McMillen IC, Suter CM, Morrison JL. Periconceptional nutrition and the early programming of a life of obesity or adversity. Prog Biophys Mol Biol. 2011;106:307–14.PubMedCrossRefGoogle Scholar
  178. 178.
    MacLaughlin SM, McMillen IC. Impact of periconceptional undernutrition on the development of the hypothalamo-pituitary-adrenal axis: does the timing of parturition start at conception? Curr Drug Targets. 2007;8:880–7.PubMedCrossRefGoogle Scholar
  179. 179.
    Watkins AJ, Wilkins A, Cunningham C, Perry VH, Seet MJ, Osmond C, Eckert JJ, Torrens C, Cagampang FRA, Cleal J, Gray WP, Hanson MA, Fleming TP. Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring. J Physiol. 2008;586:2231–44.PubMedCrossRefGoogle Scholar
  180. 180.
    Torrens C, Snelling TH, Chau R, Shanmuganathan M, Cleal JK, Poore KR, Noakes DE, Poston L, Hanson MA, Green LR. Effects of pre- and periconceptional undernutrition on arterial function in adult female sheep are vascular bed dependant. Exp Physiol. 2009;94:1024–33.PubMedCrossRefGoogle Scholar
  181. 181.
    Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J. 2009;73:411–8.PubMedCrossRefGoogle Scholar
  182. 182.
    Hernandez CE, Matthews LR, Oliver MH, Bloomfield FH, Harding JE. Effects of sex, litter size and periconceptional ewe nutrition on offspring behavioural and physiological response to isolation. Physiol Behav. 2010;101:588–94.PubMedCrossRefGoogle Scholar
  183. 183.
    Yehuda R, Bierer LM, Andrew R, Schmeidler J, Seckl JR. Enduring effects of severe developmental adversity, including nutritional deprivation, on cortisol metabolism in aging Holocaust survivors. J Psychiatr Res. 2009;43:877–83.PubMedCrossRefGoogle Scholar
  184. 184.
    Scharf M. Long-term effects of trauma: psychosocial functioning of the second and third generation of Holocaust survivors. Dev Psychopathol. 2007;19:603–22.PubMedCrossRefGoogle Scholar
  185. 185.
    Gangi S, Talamo A, Ferracuti S. The long-term effects of extreme war-related trauma on the second generation of Holocaust survivors. Violence Vict. 2009;24:687–700.PubMedCrossRefGoogle Scholar
  186. 186.
    Flory JD, Bierer LM, Yehuda R. Maternal exposure to the holocaust and health complaints in offspring. Dis Markers. 2011;30:133–9.PubMedGoogle Scholar
  187. 187.
    Bytautiene E, Tamayo E, Kechichian T, Drever N, Gamble P, Hankins GD, Saade GR. Prepregnancy obesity and sFlt1-induced preeclampsia in mice: developmental programming model of metabolic syndrome. Am J Obstet Gynecol. 2011;204:398.e-1–8.CrossRefGoogle Scholar
  188. 188.
    Becker A, van Hinsbergh VW, Jager A, Kostense PJ, Dekker JM, Nijpels G, Heine RJ, Bouter LM, Stehouwer CD. Why is soluble intercellular adhesion molecule-1 related to cardiovascular mortality? Eur J Clin Invest. 2002;32:1–8.PubMedCrossRefGoogle Scholar
  189. 189.
    Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H, Eckel RH. The metabolic syndrome. Endocr Rev. 2008;29:777–822.PubMedCrossRefGoogle Scholar
  190. 190.
    Bruce KD, Byrne CD. The metabolic syndrome: common origins of a multifactorial disorder. Postgrad Med J. 2009;85:614–21.PubMedCrossRefGoogle Scholar
  191. 191.
    Kones R. Primary prevention of coronary heart disease: integration of new data, evolving views, revised goals, and role of rosuvastatin in management. A comprehensive survey. Drug Des Devel Ther. 2011;5:325–80.PubMedCrossRefGoogle Scholar
  192. 192.
    Rattanatray L, Maclaughlin SM, Kleemann DO, Walker SK, Muhlhausler BS, McMillen IC. Impact of maternal periconceptional overnutrition on fat mass and expression adipogenic and lipogenic genes in visceral and subcutaneous fat depots in the postnatal lamb. Endocrinology. 2010;151:5195–205.PubMedCrossRefGoogle Scholar
  193. 193.
    Kitsantas P, Pawloski LR, Gaffney KF. Maternal prepregnancy body mass index in relation to Hispanic preschooler overweight/obesity. Eur J Pediatr. 2010;169:1361–8.PubMedCrossRefGoogle Scholar
  194. 194.
    Pirkola J, Pouta A, Bloigu A, Hartikainen AL, Laitinen J, Järvelin MR, Vääräsmäki M. Risks of overweight and abdominal obesity at age 16 years associated with prenatal exposures to maternal prepregnancy overweight and gestational diabetes mellitus. Diabetes Care. 2010;33:1115–21.PubMedCrossRefGoogle Scholar
  195. 195.
    Jääskeläinen A, Pussinen J, Nuutinen O, Schwab U, Pirkola J, Kolehmainen M, Järvelin MR, Laitinen J. Intergenerational transmission of overweight among Finnish adolescents and their parents: a 16-year follow-up study. Int J Obes. 2011;35:1289–94.CrossRefGoogle Scholar
  196. 196.
    Stevens A, Begum G, Cook A, Connor K, Rumball C, Oliver M, Challis J, Bloomfield F, White A. Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition. Endocrinology. 2010;151:3652–64.PubMedCrossRefGoogle Scholar
  197. 197.
    Jaquiery AL, Oliver MH, Rumball CWH, Bloomfield FH, Harding JE. Undernutrition before mating in ewes impairs the development of insulin resistance during pregnancy. Obstet Gynecol. 2009;114:869–76.PubMedCrossRefGoogle Scholar
  198. 198.
    Rumball CWH, Bloomfield FH, Oliver MH, Harding JE. Different periods of periconceptional undernutrition have different effects on growth, metabolic and endocrine status in fetal sheep. Pediatr Res. 2009;66:605–13.PubMedCrossRefGoogle Scholar
  199. 199.
    Diouf I, Charles MA, Thiebaugeorges O, Forhan A, Kaminski M, Heude B; The EDEN Mother–Child Cohort Study Group. Maternal weight change before pregnancy in relation to birth weight and risks of adverse pregnancy outcomes. Eur J Epidemiol. 2011;26:789–96.Google Scholar
  200. 200.
    Velazquez MA, Newman M, Christie MF, Cripps PJ, Crowe MA, Smith RF, Dobson H. The usefulness of a single measurement of insulin-like growth factor-1 as a predictor of embryo yield and pregnancy rates in a bovine MOET program. Theriogenology. 2005;64:1977–94.PubMedCrossRefGoogle Scholar
  201. 201.
    Ostadrahimi A, Moradi T, Zarghami N, Shoja MM. Correlates of serum leptin and insulin-like growth factor-I concentrations in normal weight and overweight/obese Iranian women. J Womens Health (Larchmt). 2008;17:1389–97.CrossRefGoogle Scholar
  202. 202.
    Spicer LJ, Crowe MA, Prendiville DJ, Goulding D, Enright WJ. Systemic but not intraovarian concentrations of insulin-like growth factor-I are affected by short-term fasting. Biol Reprod. 1992;46:920–5.PubMedCrossRefGoogle Scholar
  203. 203.
    Fenwick MA, Llewellyn S, Fitzpatrick R, Kenny DA, Murphy JJ, Patton J, Wathes DC. Negative energy balance in dairy cows is associated with specific changes in IGF-binding protein expression in the oviduct. Reproduction. 2008;135:63–75.PubMedCrossRefGoogle Scholar
  204. 204.
    León HV, Hernández-Cerón J, Keisler DH, Gutierrez CG. Plasma concentrations of leptin, insulin-like growth factor-1, and insulin in relation to changes in body condition score in heifers. J Anim Sci. 2004;82:445–51.PubMedGoogle Scholar
  205. 205.
    Kosior-Korzecka U, Bobowiec R, Lipecka C. Fasting-induced changes in ovulation rate, plasma leptin, gonadotropins, GH, IGF-I and insulin concentrations during oestrus in ewes. J Vet Med A Physiol Pathol Clin Med. 2006;53:5–11.PubMedCrossRefGoogle Scholar
  206. 206.
    Campanile G, Baruselli PS, Vecchio D, Prandi A, Neglia G, Carvalho NAT, Sales JNS, Gasparrini B, D’Occhio MJ. Growth, metabolic status, and ovarian function in buffalo (Bubalus bubalis) heifers fed a low energy or high energy diet. Anim Reprod Sci. 2010;122:74–81.PubMedCrossRefGoogle Scholar
  207. 207.
    van den Brand H, Dieleman SJ, Soede NM, Kemp B. Dietary energy source at two feeding levels during lactation of primiparous sows: I. Effects on glucose, insulin, and luteinizing hormone and on follicle development, weaning-to-estrus interval, and ovulation rate. J Anim Sci. 2000;78:396–404.PubMedGoogle Scholar
  208. 208.
    Viñoles C, Forsberg M, Martin GB, Cajarville C, Repetto J, Meikle A. Short-term nutritional supplementation of ewes in low body condition affects follicle development due to an increase in glucose and metabolic hormones. Reproduction. 2005;129:299–309.PubMedCrossRefGoogle Scholar
  209. 209.
    Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127:4195–202.PubMedGoogle Scholar
  210. 210.
    Baranowska B, Radzikowska M, Wasilewska-Dziubińska E, Kapliński A, Roguski K, Płonowski A. Neuropeptide Y, leptin, galanin and insulin in women with polycystic ovary syndrome. Gynecol Endocrinol. 1999;13:344–51.PubMedCrossRefGoogle Scholar
  211. 211.
    Nar A, Demirtas E, Ayhan A, Gurlek A. Effects of bilateral ovariectomy and estrogen replacement therapy on serum leptin, sex hormone binding globulin and insulin-like growth factor levels. Gynecol Endocrinol. 2009;25:773–8.PubMedCrossRefGoogle Scholar
  212. 212.
    Misra VK, Trudeau S. The influence of overweight and obesity on longitudinal trends in maternal serum leptin levels during pregnancy. Obesity (Silver Spring). 2011;19:416–21.CrossRefGoogle Scholar
  213. 213.
    Bützow TL, Moilanen JM, Lehtovirta M, Tuomi T, Hovatta O, Siegberg R, Nilsson CG, Apter D. Serum and follicular fluid leptin during in vitro fertilization: relationship among leptin increase, body fat mass, and reduced ovarian response. J Clin Endocrinol Metab. 1999;84:3135–9.PubMedCrossRefGoogle Scholar
  214. 214.
    Bersinger NA, Wunder DM. Adiponectin isoform distribution in serum and in follicular fluid of women undergoing treatment by ICSI. Acta Obstet Gynecol Scand. 2010;89:782–8.PubMedCrossRefGoogle Scholar
  215. 215.
    Kondo K, Morino K, Nishio Y, Kondo M, Fuke T, Ugi S, Iwakawa H, Kashiwagi A, Maegawa H. Effects of a fish-based diet on the serum adiponectin concentration in young, non-obese, healthy Japanese subjects. J Atheroscler Thromb. 2010;17:628–37.PubMedCrossRefGoogle Scholar
  216. 216.
    Qiao L, Lee B, Kinney B, Yoo HS, Shao J. Energy intake and adiponectin gene expression. Am J Physiol Endocrinol Metab. 2011;300:E809–16.PubMedCrossRefGoogle Scholar
  217. 217.
    Moallen U, Blanck R, Lehrer H, Livshitz L, Zachut M, Arieli A. Effects of high dietary crude protein on the characteristics of preovulatory follicles in dairy heifers. J Dairy Sci. 2011;94:785–92.CrossRefGoogle Scholar
  218. 218.
    Wagner EA, Falciglia GA, Amlal H, Levin L, Soleimani M. Short-term exposure to a high-protein diet differentially affects glomerular filtration rate but not acid-base balance in older compared to younger adults. J Am Diet Assoc. 2007;107:1404–8.PubMedCrossRefGoogle Scholar
  219. 219.
    Thomas MG, Bao B, Williams GL. Dietary fats varying in their fatty acid composition differentially influence follicular growth in cows fed isoenergetic diets. J Anim Sci. 1997;75:2512–9.PubMedGoogle Scholar
  220. 220.
    Picone O, Laigre P, Fortun-Lamothe L, Archilla C, Peynot N, Ponter AA, Berthelot V, Cordier A-G, Duranthon V, Chavatte-Palmer P. Hyperlipidic hypercholesterolemic diet in prepubertal rabbits affects gene expression in the embryo, restricts fetal growth and increases offspring susceptibility to obesity. Theriogenology. 2011;75:287–99.PubMedCrossRefGoogle Scholar
  221. 221.
    Veldhorst MAB, Westerterp KR, van Vught AJAH, Westerterp-Plantenga MS. Presence or absence of carbohydrates and the proportion of fat in a high-protein diet affect appetite suppression but not energy expenditure in normal-weight human subjects fed in energy balance. Br J Nutr. 2010;104:1395–405.PubMedCrossRefGoogle Scholar
  222. 222.
    Pan JW, Rothman DL, Behar KL, Stein DT, Hetherington HP. Human brain ß-hydroxybutyrate and lactate increase in fasting-induced ketosis. J Cereb Blood Flow Metab. 2000;20:1502–7.PubMedCrossRefGoogle Scholar
  223. 223.
    Rooke JA, Houdijk JG, McIlvaney K, Ashworth CJ, Dwyer CM. Differential effects of maternal undernutrition between days 1 and 90 of pregnancy on ewe and lamb performance and lamb parasitism in hill or lowland breeds. J Anim Sci. 2010;88:3833–42.PubMedCrossRefGoogle Scholar
  224. 224.
    Piatti PM, Monti F, Fermo I, Baruffaldi L, Nasser R, Santambrogio G, Librenti MC, Galli-Kienle M, Pontiroli AE, Pozza G. Hypocaloric high-protein diet improves glucose oxidation and spares lean body mass: comparison to hypocaloric high-carbohydrate diet. Metabolism. 1994;43:1481–7.PubMedCrossRefGoogle Scholar
  225. 225.
    Velazquez MA, Zaraza J, Oropeza A, Webb R, Niemann H. The role of IGF1 in the in vivo production of bovine embryos from superovulated donors. Reproduction. 2009;137:161–80.PubMedCrossRefGoogle Scholar
  226. 226.
    Rhind SM, Schanbacher BD. Ovarian follicle populations and ovulation rates of Finnish Landrace cross ewes in different nutritional states and associated profiles of gonadotrophins, inhibin, growth hormone(GH) and insulin-like growth factor-I. Domest Anim Endocrinol. 1991;8:281–91.PubMedCrossRefGoogle Scholar
  227. 227.
    Robker RL, Akison LK, Bennett BD, Thrupp PN, Chura LR, Russell DL, Lane M, Norman RJ. Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J Clin Endocrinol Metab. 2009;94:1533–40.PubMedCrossRefGoogle Scholar
  228. 228.
    Bausenwein J, Serke H, Eberle K, Hirrlinger J, Jogschies P, Hmeidan FA, Blumenauer V, Spanel-Borowski K. Elevated levels of oxidized low-density lipoprotein and of catalase activity in follicular fluid of obese women. Mol Hum Reprod. 2010;16:117–24.PubMedCrossRefGoogle Scholar
  229. 229.
    Mantzoros CS, Cramer DW, Liberman RF, Barbieri RL. Predictive value of serum and follicular fluid leptin concentrations during assisted reproductive cycles in normal women and in women with the polycystic ovarian syndrome. Hum Reprod. 2000;15:539–44.PubMedCrossRefGoogle Scholar
  230. 230.
    Savchev SI, Moragianni VA, Senger D, Penzias AS, Thornton K, Usheva A. Follicular fluid-specific distribution of vascular endothelial growth factor isoforms and sFlt-1 in patients undergoing IVF and their correlation with treatment outcomes. Reprod Sci. 2010;17:1036–42.PubMedCrossRefGoogle Scholar
  231. 231.
    La Vignera S, Condorelli R, Bellanca S, La Rosa B, Mousaví A, Busà B, Vicari LO, Vicari E. Obesity is associated with a higher level of pro-inflammatory cytokines in follicular fluid of women undergoing medically assisted procreation (PMA) programs. Eur Rev Med Pharmacol Sci. 2011;15:267–73.PubMedGoogle Scholar
  232. 232.
    Rutter LM, Manns JG. Insulin-like growth factor I in follicular development and function in postpartum beef cows. J Anim Sci. 1991;69:1140–6.PubMedGoogle Scholar
  233. 233.
    Ryan DP, Spoon RA, Williams GL. Ovarian follicular characteristics, embryo recovery, and embryo viability in heifers fed high-fat diets and treated with follicle-stimulating hormone. J Anim Sci. 1992;70:3505–13.PubMedGoogle Scholar
  234. 234.
    Gwazdauskas FC, Kendrick KW, Pryor AW, Bailey TL. Impact of follicular aspiration on folliculogenesis as influenced by dietary energy and stage of lactation. J Dairy Sci. 2000;83:1625–34.PubMedCrossRefGoogle Scholar
  235. 235.
    Comin A, Gerin D, Cappa A, Marchi V, Renaville R, Motta M, Fazzini U, Prandi A. The effect of an acute energy deficit on the hormone profile of dominant follicles in dairy cows. Theriogenology. 2002;58:899–910.PubMedCrossRefGoogle Scholar
  236. 236.
    Leroy JL, Vanholder T, Delanghe JR, Opsomer G, Van Soom A, Bols PE, Dewulf J, de Kruif A. Metabolic changes in follicular fluid of the dominant follicle in high-yielding dairy cows early post partum. Theriogenology. 2004;62:1131–43.PubMedCrossRefGoogle Scholar
  237. 237.
    Somchit A, Campbell BK, Khalid M, Kendall NR, Scaramuzzi RJ. The effect of short-term nutritional supplementation of ewes with lupin grain (Lupinus luteus), during the luteal phase of the estrous cycle on the number of ovarian follicles and the concentrations of hormones and glucose in plasma and follicular fluid. Theriogenology. 2007;68:1037–46.PubMedCrossRefGoogle Scholar
  238. 238.
    Ying S, Wang Z, Wang C, Nie H, He D, Jia R, Wu Y, Wan Y, Zhou Z, Yan Y, Zhang Y, Wang F. Effect of different levels of short-term feed intake on folliculogenesis and follicular fluid and plasma concentrations of lactate dehydrogenase, glucose and hormones in Hu-sheep during the luteal phase. Reproduction. 2011;142:699–710.Google Scholar
  239. 239.
    Quesnel H, Pasquier A, Jan N, Prunier A. Influence of feed restriction during lactation on gonadotropic hormones and ovarian development in primiparous sows. J Anim Sci. 1998;76:856–63.PubMedGoogle Scholar
  240. 240.
    Quesnel H, Pasquier A, Jan N, Prunier A. Influence of insulin treatment and feed restriction on follicular development in cyclic gilts. Anim Reprod Sci. 2000;64:77–87.PubMedCrossRefGoogle Scholar
  241. 241.
    Landau S, Braw-Tal R, Kaim M, Bor A, Bruckental I. Preovulatory follicular status and diet affect the insulin and glucose content of follicles in high-yielding dairy cows. Anim Reprod Sci. 2000;64:181–97.PubMedCrossRefGoogle Scholar
  242. 242.
    Warzych E, Cieslak A, Pawlak P, Renska N, Pers-Kamczyc E, Lechniak D. Maternal nutrition affects the composition of follicular fluid and transcript content in gilt oocytes. Vet Med. 2011;56:156–67.Google Scholar
  243. 243.
    Domínguez MM. Effects of body condition, reproductive status, and breed on follicular population and oocyte quality in cows. Theriogenology. 1995;43:1405–18.CrossRefGoogle Scholar
  244. 244.
    Duggal PS, Ryan NK, Van der Hoek KH, Ritter LJ, Armstrong DT, Magoffin DA, Norman RJ. Effects of leptin administration and feed restriction on thecal leucocytes in the preovulatory rat ovary and the effects of leptin on meiotic maturation, granulosa cell proliferation, steroid hormone and PGE2 release in cultured rat ovarian follicles. Reproduction. 2002;123:891–8.PubMedCrossRefGoogle Scholar
  245. 245.
    Mohammed AA, Attai AH. Effects of dietary urea on timing of embryo cleavages and blood components in mice. Vet World. 2011;4:360–3.Google Scholar
  246. 246.
    Jungheim ES, Schoeller EL, Marquard KL, Louden ED, Schaffer JE, Moley KH. Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology. 2010;151:4039–46.PubMedCrossRefGoogle Scholar
  247. 247.
    Marquard KL, Stephens SM, Jungheim ES, Ratts VS, Odem RR, Lanzendorf S, Moley KH. Polycystic ovary syndrome and maternal obesity affect oocyte size in in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril. 2011;95:2146–9.PubMedCrossRefGoogle Scholar
  248. 248.
    Arlotto T, Schwartz J-L, First NL, Leidfried-Rutledge ML. Aspects of follicle and oocyte stage that affect in vitro maturation and development of bovine oocytes. Theriogenology. 1996;45:943–56.PubMedCrossRefGoogle Scholar
  249. 249.
    Fair T, Hyttel P, Greve T. Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol Reprod Dev. 1995;42:437–42.PubMedCrossRefGoogle Scholar
  250. 250.
    Otoi T, Yamamoto K, Koyama N, Tachikawa S, Suzuki T. Bovine oocyte diameter in relation to developmental competence. Theriogenology. 1997;48:769–74.PubMedCrossRefGoogle Scholar
  251. 251.
    Pisani LF, Antonini S, Pocar P, Ferrari S, Brevini TA, Rhind SM, Gandolfi F. Effects of pre-mating nutrition on mRNA levels of developmentally relevant genes in sheep oocytes and granulosa cells. Reproduction. 2008;136:303–12.PubMedCrossRefGoogle Scholar
  252. 252.
    Zuccotti M, Merico V, Cecconi S, Redi CA, Garagna S. What does it take to make a developmentally competent mammalian egg? Hum Reprod Update. 2011;17:525–40.PubMedCrossRefGoogle Scholar
  253. 253.
    Sirotkin AV. Effect of two types of stress (heat shock/high temperature and malnutrition/serum deprivation) on porcine ovarian cell functions and their response to hormones. J Exp Biol. 2010;213:2125–30.PubMedCrossRefGoogle Scholar
  254. 254.
    Leroy JLMR, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, Genicot G, Van Soom A. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction. 2005;130:485–95.PubMedCrossRefGoogle Scholar
  255. 255.
    Leroy JMLR, Vanholder T, Opsomer G, Van Soom A, de Kruif A. The in vitro development of bovine oocytes after maturation in glucose and ß-hydroxybutyrate concentrations associated with negative energy balance in dairy cows. Reprod Domest Anim. 2006;41:119–23.PubMedCrossRefGoogle Scholar
  256. 256.
    Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Leese HJ, Bols PE, Leroy JL. Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One. 2011;6:e23183.PubMedCrossRefGoogle Scholar
  257. 257.
    Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, Mukasa C, Okabe T, Nomura M, Goto K, Nawata H. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology. 2001;142:3590–7.PubMedCrossRefGoogle Scholar
  258. 258.
    Vanholder T, Leroy JL, Soom AV, Opsomer G, Maes D, Coryn M, de Kruif A. Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro. Anim Reprod Sci. 2005;87:33–44.PubMedCrossRefGoogle Scholar
  259. 259.
    Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60:2441–9.PubMedCrossRefGoogle Scholar
  260. 260.
    Armstrong DG, Gong JG, Gardner JO, Baxter G, Hogg CO, Webb R. Steroidogenesis in bovine granulosa cells: the effects of short-term changes in dietary intake. Reproduction. 2002;123:371–8.PubMedCrossRefGoogle Scholar
  261. 261.
    Revelli A, Piane LD, Casano S, Molinari E, Massobrio M, Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol. 2009;7:40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Centre for Biological Sciences, Southampton General HospitalUniversity of SouthamptonSouthamptonUK

Personalised recommendations