Oogenesis pp 265-287 | Cite as

The Role of the Plasma Membrane and Pericortical Cytoplasm in Early Mammalian Development

  • Jonathan Van BlerkomEmail author


In a clinical context, each stage of mammalian oogenesis is usually considered in terms of nuclear and cytoplasmic processes that convey meiotic, fertilization and developmental competence to a preovulatory and ovulated oocyte, respectively. While the progression of changes in chromsomal configurations define specific stages of the meiotic cell cycle, which in the human can be decades long, cytoplasmic changes that lead to fertilization and developmental competence for the ovulated oocyte tend to be poorly understood. Yet, fertilization and early developmental failures are often attributed to largely undefined or putative defects in cytoplasmic development during oogenesis in general, and preovulatory maturation in particular. Failures of sperm penetration in meiotically mature oocytes, or the inability of a penetrated oocyte to support the resumption of meiosis or the normal evolution of pronuclei, are usually viewed as consequences of a global rather than focal cytoplasmic defect(s). It is likely that most clinical embryologists consider the human ooplasm to be spatially unstructured with respect to physiological, biochemical and regulatory functions.

Here, the notion that the mammalian oocyte may be functionally structured is discussed in the context of critical regulatory and physiological processes that current findings indicate may be differentially localized to the plasma membrane, subplasmalemmal and pericortical cytoplasm. Confirmation that spatial localization or compartmentalization of regulatory and developmental functions and activities exists in the in the mature human oocyte may have important clinical implications if a greater understanding of the fundamental cell biology of the human oocyte results in information that can identify new causes of infertility, or explain failures in treatments such as IVF.


Oocyte competence Oolemma Subplasmalemmal cytoplasm Subcortical cytoplasm Lipid raft microdomains Mitochondria 


  1. 1.
    Balaban B, et al. Alpha scientists in reproductive medicine and ESHRE special interest group of embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.CrossRefGoogle Scholar
  2. 2.
    Ahistrom A, Westin C, Reismer E, Wikland M, Hardarson T. Trophectoderm morphology: an important parameter for predicting live birth after single blastocyst transfer. Hum Reprod. 2011;26:3289–96.CrossRefGoogle Scholar
  3. 3.
    Wong C, Loewke K, Bossert N, Behr B, De Jong C, Baer T, Reijo R. Non-invasive imaging of human embryos before embryonic genomic activation predicts development to the blastocyst stage. Nature Biotech. 2010;28:1115–21.CrossRefGoogle Scholar
  4. 4.
    Seli E, Sakkas D, Scott R, Kwok S, Rosendahl S, Burns D. Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2007;88:1350–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Scott R, Seli E, Miller K, Sakkas D, Scott K, Burns D. Noninvasive metabolomic profiling of human embryo culture medium using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril. 2008;90:7–83.CrossRefGoogle Scholar
  6. 6.
    Seli E, Botros L, Sakkas D, Burns D. Noninvasive metabolomic profiling of embryo culture medium using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2008;90:2183–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Marhuenda-Egea F, Martinez-Sabater E, Ruben M, Gonsalvez-Alverez R, Lledo B, Ten J, Bernabeu R. A crucial step in assisted reproduction technology: human embryo selection using metabolomic evaluation. Fertil Steril. 2010;94:772–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Gott A, Hardy K, Winston R, Leese H. Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum Reprod. 1990;5:104–8.PubMedGoogle Scholar
  9. 9.
    Gardner D, Land M, Stevens J, Schoolcraft W. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril. 2001;76:1175–80.PubMedCrossRefGoogle Scholar
  10. 10.
    Tejera A, Herrero J, des los Santos M, Garrido N, Ramsing N, Meseguer M. Oxygen consumption is a quality marker for human oocyte competence conditioned by ovarian stimulation regimens. Fertil Steril. 2011;96:618–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Hardarson T, Ahlstrom A, Rogberg L, Botros L, Hillensjo T, Westlander G, Sakkas D, Wikland M. Non-invasive metabolomic profiling of day 2 and day 5 embryo culture medium: a prospective randomized trial. Hum Reprod. 2012;27:89–96.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Blerkom J. Mitochondria in early mammalian development. Semin Cell Dev Biol. 2009;20:354–64.PubMedCrossRefGoogle Scholar
  13. 13.
    Van Blerkom J, Davis PW, Lee J. ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum Reprod. 1995;10:415–24.PubMedGoogle Scholar
  14. 14.
    Zeng H, Ren Z, Yueng S, Shu Y, et al. Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in-vitro matured human oocytes. Hum Reprod. 2007;22:1681–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Shoubridge E, Wai T. Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol. 2007;77:87–111.PubMedCrossRefGoogle Scholar
  16. 16.
    Muller-Hocker J, Shafer S, Weis S, Munscjer C, Strowitzik T. Morphological, cytochemical and molecular genetic analysis of mitochondria in isolated human oocytes and reproductive age. Mol Hum Reprod. 1996;2:951–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Wilding M, Dale B, Marino M, di Mattelo L, Alviggi C, Pisaturo M, et al. Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod. 2001;16:111–9.CrossRefGoogle Scholar
  18. 18.
    Van Blerkom J, Davis P, Mawhig V, Alexander S. Domains of high and low polarized mitochondria in mouse and human oocytes and early embryos. Hum Reprod. 2002;17:393–406.PubMedCrossRefGoogle Scholar
  19. 19.
    Acton B, Jurisicova A, Jurisica I, Casper R. Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development. Mol Hum Reprod. 2004;10:23–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Edwards R. Causes of early embryonic loss in human pregnancy. Hum Reprod. 1986;1:185–98.PubMedGoogle Scholar
  21. 21.
    Van Blerkom J, Henry G. Oocyte dysmorphism and aneuploidy in meiotically-mature human oocytes after controlled ovarian stimulation. Hum Repro. 1992;7:379–90.Google Scholar
  22. 22.
    Wramsby H, Fredga K, Liedholm P. Chromosomal analysis of human oocytes recovered from preovulatory follicles in stimulated cycles. N Engl J Med. 1987;316:121–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Van Blerkom J, Henry G. Cytogenetic analysis of living human oocytes: cellular basis and developmental consequences of perturbations in chromosomal organization and complement. Hum Reprod. 1988;3:217–25.Google Scholar
  24. 24.
    Chiang T, Schultz R, Lampson M. Meiotic origins of maternal age-related aneuploidy. Biol Reprod. 2012;86:1–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Bolumar F, Olsen J, Boldsen J. Smoking reduces fecundity: a European multicenter study of infertility and subfertility. Amer J Epid. 1996;143:578–87.CrossRefGoogle Scholar
  26. 26.
    Pasquali R, Patton L, Gambineri A. Obesity and infertility. Curr Opin Endocrinol Diabetes Obes. 2007;14:482–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang H, Dey S-K. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7:185–99.PubMedCrossRefGoogle Scholar
  28. 28.
    Giudice L. Potential biomarkers of uterine receptivity. Hum Reprod. 1999;14 Suppl 2:3–16.PubMedCrossRefGoogle Scholar
  29. 29.
    Oakmak H, Taylor H. Implantation failure: molecular mechanisms and clinical treatment. Hum Reprod Update. 2011;17:242–53.CrossRefGoogle Scholar
  30. 30.
    Corey D, Abrams J. Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol. 2001;2:reviews1015.1–reviews1015.3 morpholino paper targeted knock-downs.Google Scholar
  31. 31.
    Van Blerkom J. The structural relation and posttranslational modification of stage-specific proteins synthesized during early preimplantation development in the mouse. Proc Natl Acad Sci USA. 1981;78:7629–33.PubMedCrossRefGoogle Scholar
  32. 32.
    Conrood S, Bolling L, Wright P, Viscont P, Herr J. A morpholino phenocopy of the mouse mos mutation. Genesis. 2001;30:198–200.CrossRefGoogle Scholar
  33. 33.
    Edidin M. The state of lipid rafts: from model membranes to cells. Annul Rev Biophys Biomol Struct. 2003;32:257–83.CrossRefGoogle Scholar
  34. 34.
    Yavin E, Brand A. From ultramolecular asymmetries to raft assemblies. In: Mattson M, editor. Membrane microdomain signaling: lipid rafts in biology and medicine. Totowa: Humana Press Inc.; 2005. p. 1–14.CrossRefGoogle Scholar
  35. 35.
    Matka J, Szollosi J. Regulatory aspects of membrane domain (raft) dynamics in live cells. In: Mattson P, editor. Membrane microdomain signaling: lipid rafts in biology and medicine. Totowa: Humana Press Inc.; 2005. p. 15–46.CrossRefGoogle Scholar
  36. 36.
    Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1:31–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Varma A, Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 1998;394:798–801.PubMedCrossRefGoogle Scholar
  38. 38.
    Brown D. Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology. 2006;21:430–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Sasseville M, Gagnon M-C, Guillemette C, Sullivan R, Gilchrist R, Richard F. Regulation of gap junctions in porcine cumulus-oocyte complexes: contributions of granulosa cell contact, gonadotropins, and lipid rafts. Mol Endocrinol. 2009;23:700–10.PubMedCrossRefGoogle Scholar
  40. 40.
    Gadella B, Tsai P-S, Boerke A, Brewis I. Sperm head membrane reorganization during capacitation. Int J Dev Biol. 2008;52:473–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Belton R, Adams N, Foltz K. Isolation and characterization of sea urchin egg lipid rafts and their possible function during fertilization. Mol Reprod Dev. 2001;59:294–305.PubMedCrossRefGoogle Scholar
  42. 42.
    Lagerholm B, Weinreb G, Jacobson K, Thompson N. Detecting microdomains in intact cell membranes. Annu Rev Phys Chem. 2005;56:309–36.PubMedCrossRefGoogle Scholar
  43. 43.
    Owens D, Neil M, French P, Magee A. Optical techniques for imaging membrane lipid microdomains in living cells. Semin Cell Dev Biol. 2007;18:591–8.CrossRefGoogle Scholar
  44. 44.
    Meriano J, Alexis J, Visram-Zaver S, Cruz M, Casper R. Tracking of oocyte dysmorphisms for ICSI patients may prove relevant to outcome in subsequent patient cycles. Hum Reprod. 2001;16:2118–23.PubMedCrossRefGoogle Scholar
  45. 45.
    Van Blerkom J, Caltrider K. The molecular archi­tecture of lipid raft microdomains in the human oolemma and its relationship to penetration competence. (submitted).Google Scholar
  46. 46.
    Van Blerkom J, Davis P, Merriam J, Sinclair J. Nuclear and cytoplasmic dynamics of sperm penetration, pronuclear formation, and microtubule organization during fertilization and early preimplantation development in the human. Hum Reprod Update. 1995;1:429–61.PubMedCrossRefGoogle Scholar
  47. 47.
    Ishii M, Iwai K, Koike M, Oshima S, Kudo-Tanaka E, Ishii T, Mima T, Yoshinori K, et al. RANKL-induced expression of tetraspanin CD9 in lipid raft membranes microdomains is essential for cell fusion during osteoclastogenesis. J Bone Miner Res. 2006;6:965–76.CrossRefGoogle Scholar
  48. 48.
    Miyado K, Yoshida K, Yamagata K, Sakakibara K, Okabe M, Wang X, Miyamota K, et al. The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc Natl Acad Sci USA. 2008;105:12921–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Ziyyat A, Rubinstein E, Monier-Gravelle F, Barraud V, Kulski O, Prenant M, Boucheix C, Bornsel M, Wolf J. CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J Cell Sci. 2006;119:416–24.PubMedCrossRefGoogle Scholar
  50. 50.
    Jegou A, Ziyyat A, Barraud-Lange V, Perez E, Wolf J, Pincet F, Gourier C. CD9 tetraspanin generates fusion competent sites on egg membrane for mammalian fertilization. Prod Natl Acad Sci USA. 2011;108:10946–51.CrossRefGoogle Scholar
  51. 51.
    Hayes M, Rescher U, Gerke V, Moss S. Annexin-actin interactions. Traffic. 2004;5:571–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Babiychuk E, Draeger A. Annexins in cell membrane dynamics: Ca2+-regulated association of lipid microdomains. J Cell Biol. 2000;150:1113–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2011;11:797–813.PubMedCrossRefGoogle Scholar
  54. 54.
    Reers M, Smiley S, Mottola-Hartshorn C, et al. Mitochondrial membrane potential monitored by JC-1 dye. Meth in Enzymol. 1995;260:406–17.CrossRefGoogle Scholar
  55. 55.
    Salvioli A, Ardizzoni A, Franceschu C, Cossarizza A. JC-1, but not DiOC6 or rhodamine 123, is a reliable fluorescent probe to assess ΔΨm changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997;411:77–82.PubMedCrossRefGoogle Scholar
  56. 56.
    Huang S, Ratliff K, Matouschek A. Protein unfolding by the mitochondrial membrane potential. Nat Struct Biol. 2002;9:301–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Van Blerkom J. Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reprod BioMed Online. 2008;16:553–69.PubMedCrossRefGoogle Scholar
  58. 58.
    Aw T-Y. Intracellular compartmentalization of organelles and gradients of low molecular weight species. Int Rev Cytol. 2000;192:223–53.PubMedCrossRefGoogle Scholar
  59. 59.
    Diaz G, Setzu H, Zucca A, Isola R, et al. Subcellular heterogeneity of mitochondrial membrane potential: relationship with organelle distribution and intercellular contacts in normal, hypoxic and apoptotic cells. J Cell Sci. 1999;112:1077–84.PubMedGoogle Scholar
  60. 60.
    Motta P, Nottola S, Makabe S, Heyn R. Mitochondrial morphology in human fetal and adult female germ cells. Hum Reprod. 2000;15 Suppl 2:129–47.PubMedCrossRefGoogle Scholar
  61. 61.
    Makabe S, Van Blerkom J. Human female reproduction. Boca Raton: Taylor and Francis; 2006.Google Scholar
  62. 62.
    Van Blerkom J, Davis P. High-polarized (ΔΨmHIGH) mitochondria are spatially polarized in human oocytes and early embryos in stable subplasmalemmal domains: developmental significance and the concept of vanguard mitochondria. Reprod BioMed Online. 2006;13:246–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Van Blerkom J. Spontaneous and experimental translocation of the subplasmalemmal cytoplasm within and between blastomeres in early human embryos: possible effects on the redistribution and inheritance of regulatory domains. Reprod BioMed Online. 2007;14:191–200.PubMedCrossRefGoogle Scholar
  64. 64.
    Van Blerkom J. Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed meiosis in cultured mouse oocytes. Proc Natl Acad Sci USA. 1991;88:5031–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Van Blerkom J, Davis P, Alexander S. Differential mitochondrial inheritance between blastomeres in cleavage stage human embryos: determination at the pronuclear stage and relationship to microtubular organization, ATP content and developmental competence. Hum Reprod. 2000;15:2621–33.PubMedCrossRefGoogle Scholar
  66. 66.
    Van Blerkom J. The role of mitochondria in human oogenesis and preimplantation embryogeneisis: engines of metabolism, ionic regulation and developmental competence. Reproduction. 2004;28:269–80.CrossRefGoogle Scholar
  67. 67.
    Jones A, Van Blerkom J, Davis P, Toledo A. Cryopreservation of metaphase II human oocytes effects mitochondrial inner membrane potential: implications for developmental competence. Hum Reprod. 2004;19:1861–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Van Blerkom J, Davis P. Mitochondrial signaling and fertilization. Mol Hum Reprod. 2007;13:759–70.PubMedCrossRefGoogle Scholar
  69. 69.
    Van Blerkom J, Davis P, Alexander S. Inner mitochondrial membrane potential cytoplasmic ATP content and free calcium levels in metaphase II mouse oocytes. Hum Reprod. 2003;18:2429–40.PubMedCrossRefGoogle Scholar
  70. 70.
    Van Blerkom J, Davis P, Thalhammer V. Regulation of mitochondrial polarity in mouse and human oocytes: the influence of cumulus derived nitric oxide. Mol Hum Reprod. 2008;14:431–44.PubMedCrossRefGoogle Scholar
  71. 71.
    Van Blerkom J, Cox H, Davis P. Mitochondrial regulation of development during the preimplantation period: cell and location-specific ΔΨm in normal, diapausing and outgrowing mouse blastocysts. Reproduction. 2006;131:961–70.PubMedCrossRefGoogle Scholar
  72. 72.
    Fleming T, Johnson M. From egg to epithelium. Ann Rev Cell Biol. 1988;4:459–85.PubMedCrossRefGoogle Scholar
  73. 73.
    Houghton F. Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation. 2006;7:11–8.CrossRefGoogle Scholar
  74. 74.
    Van Blerkom J, Antczak M, Schrader R. The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod. 1997;12:1047–55.PubMedCrossRefGoogle Scholar
  75. 75.
    Coffman J, Denegre J. Mitochondria, redox signaling and axis specification in metazoan embryos. Dev Biol. 2007;308:266–80.PubMedCrossRefGoogle Scholar
  76. 76.
    Squirrel J, Schramm R, Paprocki A, Wokosin D, Bavister B. Imaging mitochondrial organization in living primate oocytes and embryos using mutliphoton microscopy. Microsc Microanal. 2003;9:190–201.CrossRefGoogle Scholar
  77. 77.
    Payer B, Saitou M, Barton S, Thresher R, Dixon J, Zahn D, et al. Stella is a maternal effect gene required for normal early development in mice. Curr Biol. 2003;13:2110–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Li L, Zheng P, Dean J. Maternal control of early mouse development. Development. 2010;137:859–70.PubMedCrossRefGoogle Scholar
  79. 79.
    Plusa B, Frankenberg S, Chalmers A, Hadjantonakis A, Moore C, Papalopulu N, Glover D, Zernika-Goetz M. Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J Cell Sci. 2005;118:505–15.PubMedCrossRefGoogle Scholar
  80. 80.
    Christians E, Davis A, Thomas S, Benjamin L. Maternal effect of Hsf1 on reproductive success. Nature. 2000;407:693–4.PubMedCrossRefGoogle Scholar
  81. 81.
    Tong Z-B, Bondy C, Zhou J, Nelson L. A human homologue of mouse Mater, a maternal effect gene essential for early embryonic development. Hum Reprod. 2002;17:903–11.PubMedCrossRefGoogle Scholar
  82. 82.
    Wu X, Viveiors M, Eppig J, Bai Y, Fitzpatrick S, Matzuk M. Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat Genet. 2003;33:187–91.PubMedCrossRefGoogle Scholar
  83. 83.
    Gosden R, Lee B. Portrait of an oocyte: our obscure origin. J Clin Invest. 2010;120:973–83.PubMedCrossRefGoogle Scholar
  84. 84.
    Gallicano G, Larabell C, McGaugher R, Capaco D. Novel cytosleketal elements in mammalian eggs are composed of a unique arrangement of intermediate filaments. Mech Dev. 1994;45:211–26.PubMedCrossRefGoogle Scholar
  85. 85.
    Yurttas P, Morency E, Coonrod S. Use of proteomics to identify highly abundant maternal factors that drive the egg-to-embryo transition. Reproduction. 2010;139:809–23.PubMedCrossRefGoogle Scholar
  86. 86.
    Yurttas P, Vitale A, Fitzhenry R, Cohen-Gould L, Wu W, Gossen J, Coonrod S. Role for PADI6 and the cytoplasmic lattices in robosomal storage in oocytes and translational control in the early mouse embryo. Development. 2008;135:2627–36.PubMedCrossRefGoogle Scholar
  87. 87.
    Kan R, Yurttas P, Kim B, Wo L, Lee B, Gosden R, Coonrod S. Regulation of mouse oocyte microtubule and organelle dynamics by PADI6 and the cytoplasmic lattices. Dev Biol. 2011;350:311–22.PubMedCrossRefGoogle Scholar
  88. 88.
    Li L, Baibakov B, Dean J. A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev Cell. 2008;15:416–25.PubMedCrossRefGoogle Scholar
  89. 89.
    Kim B, Kan R, Anguish L, Nelson L, Coonrod S. Potential role for MATER in cytoplasmic lattice formation in mutine oocytes. PLoS One. 2010;5:e12587.PubMedCrossRefGoogle Scholar
  90. 90.
    Tong Z-B, Gold L, De Pol A, Vanevski KM, Dorward H, Sena P, et al. Developmental expression and subcellular localization of mouse MATER, an oocyte-specific protein essential for early development. Endocrinology. 2004;145:1427–34.PubMedCrossRefGoogle Scholar
  91. 91.
    Morency E, Anguish L, Coonrod S. Subcellular localization of cytoplasmic lattice-associated proteins is dependent upon fixation and processing procedures. PLoS One. 2011;6:e17226.PubMedCrossRefGoogle Scholar
  92. 92.
    Ohsugi M, Zheng P, Baibakov B, Li L, Dean J. Maternally derived FILA-MATER complex localizes asymmetrically in cleavage-stage mouse embryos. Development. 2008;135:259–69.PubMedCrossRefGoogle Scholar
  93. 93.
    Ouandaogo Z, Haouzi D, Assou S, Dechaud H, Kadoch I, De Vos J, Hamamah S. Human cumulus cells molecular signature in relation to oocyte nuclear maturity. PLoS One. 2011;6:e27179.PubMedCrossRefGoogle Scholar
  94. 94.
    Demant M, Trapphoff T, Frohlich T, Arnold G, Eichenlaub-Ritter U. Vitrification at the preantral stage alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. Hum Reprod. 2012;27:1096–11.Google Scholar
  95. 95.
    Fauser B, Diedrich K, Bouchard P, Domínguez F, Matzuk M, Franks S, et al. Contemporary genetic technologies and female reproduction. Hum Reprod Update. 2011;17:829–47.PubMedCrossRefGoogle Scholar
  96. 96.
    Van Blerkom J, Trout S. Follicular markers of oocyte competence. In: Elder K, Cohen J, editors. Human preimplantation embryo selection. London: Informa Press; 2007.Google Scholar
  97. 97.
    Van Blerkom J. Molecular mining of follicular fluid for reliable biomarkers of human oocytes and embryo developmental competence. In: Nagy P, Varghese A, Agarwal A, editors. Practical manual of in vitro fertilization: advanced methods and novel devices. Springer; 2012;677–686.Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUSA
  2. 2.Colorado Reproductive EndocrinologyRose Hospital Medical CenterDenverUSA

Personalised recommendations