Oogenesis pp 231-252 | Cite as

Cumulus Cell Gene Expression as a Marker of Oocyte Quality

  • Mourad Assidi
  • Marc-André SirardEmail author


Cumulus cells (CCs) are a highly specialized cell type that surround the mammalian oocyte from antrum formation to the early stages of embryo development in the oviduct. During this period of close vicinity, CCs maintain paracrine and cell-to-cell communications with the oocyte. The increasing use of CCs to predict oocyte quality requires a growing understanding of their involvement in oocyte developmental competence acquisition. This chapter highlights the current knowledge about CC differentiation and communications with the oocyte. Special focus is given to the molecular biomarkers differentially expressed in CCs that reflect higher oocyte quality and therefore are associated with successful embryo development and/or implantation. The biological, signaling, and molecular functions and/or pathways of CCs during oocyte maturation, ovulation, fertilization, and early embryo development are also discussed. Using recent findings in other tissues/species, some hypotheses about the processes whereby CCs exert their functions are suggested. Further characterization will be required to refine these biomarkers in order to improve both animal and human ART.


Cumulus Oocyte Gene expression Biomarkers Competence IVF 


  1. 1.
    Hyttel P, Fair T, Callesen H, Greve T. Oocyte growth, capacitation and final maturation in cattle. Theriogenology. 1997;47(1):23–32.CrossRefGoogle Scholar
  2. 2.
    Mermillod P. Croissance et maturation de lovocyte in vivo et in vitro. In:,, editors. La Reproduction Chez les Mammifères et lHomme.: Ellipses; 2001. p. 348–66.Google Scholar
  3. 3.
    Schultz RM, Montgomery RR, Ward-Bailey PF, Eppig JJ. Regulation of oocyte maturation in the mouse: possible roles of intercellular communication, cAMP, and testosterone. Dev Biol. 1983;95(2):294–304.PubMedCrossRefGoogle Scholar
  4. 4.
    Sirard M-A, Trounson A. Follicular factors affecting oocyte maturation and developmental competence. In: Taog RG, editor. Biology and athology of the ocyte: ts ole in ertility and eproductive edcine. Cambridge: Cambridge niversity Press; 2003. p. 305–15.Google Scholar
  5. 5.
    Hunter RHF. Formation and structure of ovaries: elaboration of follicular compartments. In: Hunter RHF, editor. Physiology of the Graafian ollicle and vulation. Cambridge: Cambridge University Press; 2003. p. 24–77.Google Scholar
  6. 6.
    Ali A, Paradis F, Vigneault C, Sirard M-A. The potential role of gap junction communication between cumulus cells and bovine oocytes during in vitro maturation. Mol Reprod Dev. 2005;71(3):358–67.CrossRefGoogle Scholar
  7. 7.
    Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A. Minireview: unctions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev. 2002;61(3):414–24.PubMedCrossRefGoogle Scholar
  8. 8.
    Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14(2):159–77.PubMedCrossRefGoogle Scholar
  9. 9.
    Sirard MA, Desrosier S, Assidi M. In vivo and in vitro effects of FSH on oocyte maturation and developmental competence. Theriogenology. 2007;68:71–6.CrossRefGoogle Scholar
  10. 10.
    Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006;65(1):126–36.PubMedCrossRefGoogle Scholar
  11. 11.
    Leibfried L, First NL. Characterization of bovine follicular oocytes and their ability to mature in vitro. J Anim Sci. 1979;48(1):76–86.PubMedGoogle Scholar
  12. 12.
    Balaban B, Urman B. Effect of oocyte morphology on embryo development and implantation. Reprod Biomed Online. 2006;12(5):608–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Borini A, Lagalla C, Cattoli M, Sereni E, Sciajno R, Flamigni C, Coticchio G. Predictive factors for embryo implantation potential. Reprod Biomed Online. 2005;10(5):653–68.PubMedCrossRefGoogle Scholar
  14. 14.
    Ebner T, Moser M, Sommergruber M, Tews G. Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: a review. Hum Reprod Update. 2003;9(3):251–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Lonergan P, Monaghan P, Rizos D, Boland MP, Gordon I. Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilization, and culture in vitro. Mol Reprod Dev. 1994;37(1):48–53.PubMedCrossRefGoogle Scholar
  16. 16.
    Vassena R, Mapletoft RJ, Allodi S, Singh J, Adams GP. Morphology and developmental competence of bovine oocytes relative to follicular status. Theriogenology. 2003;60(5):923–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Warriach HM, Chohan KR. Thickness of cumulus cell layer is a significant factor in meiotic competence of buffalo oocytes. J Vet Sci. 2004;5(3):247–51.PubMedGoogle Scholar
  18. 18.
    Blondin P, Sirard MA. Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Mol Reprod Dev. 1995;41(1):54–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Hyttel P, Callesen H, Greve T. Ultrastructural features of preovulatory oocyte maturation in superovulated cattle. J Reprod Fertil. 1986;76(2):645–56.PubMedCrossRefGoogle Scholar
  20. 20.
    Fair T, Hulshof SC, Hyttel P, Greve T, Boland M. Oocyte ultrastructure in bovine primordial to early tertiary follicles. Anat Embryol (Berl). 1997;195(4):327–36.CrossRefGoogle Scholar
  21. 21.
    Kruip TAM, Cran DG, van Beneden TH, Dieleman SJ. Structural changes in bovine oocytes during final maturation in vivo. Gamete Res. 1983;8(1):29–47.CrossRefGoogle Scholar
  22. 22.
    Wassarman PM, Albertini DF The ammalian vum. In: Knobil E JD, 2nd ed 1994 79–122.Google Scholar
  23. 23.
    Sun QY. Cellular and molecular mechanisms leading to cortical reaction and polyspermy block in mammalian eggs. Microsc Res Tech. 2003;61(4):342–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Fair T, Hyttel P, Greve T. Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol Reprod Dev. 1995;42(4):437–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Mermillod P, Marchal R. La maturation de l’ovocyte de mammifères. médecine/sciences m/s n°2. 1999;15:148–56.CrossRefGoogle Scholar
  26. 26.
    Barnes FL, First NL. Embryonic transcription in in vitro cultured bovine embryos. Mol Reprod Dev. 1991;29(2):117–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Sirard MA, Florman HM, Leibfried-Rutledge ML, Barnes FL, Sims ML, First NL. Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol Reprod. 1989;40(6):1257–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Memili E, Dominko T, First NL. Onset of transcription in bovine oocytes and preimplantation embryos. Mol Reprod Dev. 1998;51(1):36–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Weston A, Sommerville J. Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Res. 2006;34(10):3082–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Lequarre AS, Traverso JM, Marchandise J, Donnay I. Poly(A) RNA is reduced by half during bovine oocyte maturation but increases when meiotic arrest is maintained with CDK inhibitors. Biol Reprod. 2004;71(2):425–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Tremblay K, Vigneault C, McGraw S, Sirard MA. Expression of cyclin B1 messenger RNA isoforms and initiation of cytoplasmic polyadenylation in the bovine oocyte. Biol Reprod. 2005;72(4):1037–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Fan HY, Sun QY. Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals. Biol Reprod. 2004;70(3):535–47.PubMedCrossRefGoogle Scholar
  33. 33.
    Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J. 1998;335(Pt 1):1–13.PubMedGoogle Scholar
  34. 34.
    Cetica PD, Pintos LN, Dalvit GC, Beconi MT. Effect of lactate dehydrogenase activity and isoenzyme localization in bovine oocytes and utilization of oxidative substrates on in vitro maturation. Theriogenology. 1999;51(3):541–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Krisher RL, Bavister BD. Enhanced glycolysis after maturation of bovine oocytes in vitro is associated with increased developmental competence. Mol Reprod Dev. 1999;53(1):19–26.PubMedCrossRefGoogle Scholar
  36. 36.
    Lu C, Yang W, Hu Z, Liu Y. Granulosa cell proliferation differentiation and its role in follicular development. Chinese Sci Bull. 2005;50(23):2665–71.CrossRefGoogle Scholar
  37. 37.
    Byskov AG, Høyer PE Embryology of ammalian onads and ucts. In: Knobil EN JD vol. 1 Raven Press 1994 487–540.Google Scholar
  38. 38.
    Sawyer HR, Smith P, Heath DA, Juengel JL, Wakefield SJ, McNatty KP. Formation of ovarian follicles during fetal development in sheep. Biol Reprod. 2002;66(4):1134–50.PubMedCrossRefGoogle Scholar
  39. 39.
    Greenwald GS, Roy SK Follicular evelopment and ts ontrol. In: Knobil EN JD, vol. 1 Raven Press 1994 629–724.Google Scholar
  40. 40.
    Richards JS. Genetics of ovulation. Semin Reprod Med. 2007;25(4):235–42.PubMedCrossRefGoogle Scholar
  41. 41.
    Hirshfield AN. Patterns of [3H] thymidine incorporation differ in immature rats and mature, cycling rats. Biol Reprod. 1986;34(1):229–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Vanderhyden BC, Telfer EE, Eppig JJ. Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol Reprod. 1992;46(6):1196–204.PubMedCrossRefGoogle Scholar
  43. 43.
    Hillensjo T, Magnusson C, Svensson U, Thelander H. Effect of luteinizing hormone and follicle-stimulating hormone on progesterone synthesis by cultured rat cumulus cells. Endocrinology. 1981;108(5):1920–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Shimada M, Nishibori M, Isobe N, Kawano N, Terada T. Luteinizing hormone receptor formation in cumulus cells surrounding porcine oocytes and its role during meiotic maturation of porcine oocytes. Biol Reprod. 2003;68(4):1142–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Robert C, Gagne D, Lussier JG, Bousquet D, Barnes FL, Sirard MA. Presence of LH receptor mRNA in granulosa cells as a potential marker of oocyte developmental competence and characterization of the bovine splicing isoforms. Reproduction. 2003;125(3):437–46.PubMedCrossRefGoogle Scholar
  46. 46.
    Fu M, Chen X, Yan J, Lei L, Jin S, Yang J, Song X, Zhang M, Xia G. Luteinizing hormone receptors expression in cumulus cells closely related to mouse oocyte meiotic maturation. Front Biosci. 2007;12:1804–13.PubMedGoogle Scholar
  47. 47.
    Meduri G, Vuhai-Luuthi MT, Jolivet A, Milgrom E. New functional zonation in the ovary as shown by immunohistochemistry of luteinizing hormone receptor. Endocrinology. 1992;131(1):366–73.PubMedCrossRefGoogle Scholar
  48. 48.
    Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci USA. 2002;99(5):2890–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Pangas SA, Matzuk MM. The art and artifact of GDF9 activity: cumulus expansion and the cumulus expansion-enabling factor. Biol Reprod. 2005;73(4):582–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Su YQ, Wu X, OBrien MJ, Pendola FL, Denegre JN, Matzuk MM, Eppig JJ. Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol. 2004;276(1):64–73.PubMedCrossRefGoogle Scholar
  51. 51.
    Gilchrist RB, Ritter LJ, Armstrong DT. Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 2004;82–83:431–46.PubMedCrossRefGoogle Scholar
  52. 52.
    Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122(6):829–38.PubMedCrossRefGoogle Scholar
  53. 53.
    Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296(5576):2178–80.PubMedCrossRefGoogle Scholar
  54. 54.
    Diaz FJ, Wigglesworth K, Eppig JJ. Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice. Dev Biol. 2007;305(1):300–11.PubMedCrossRefGoogle Scholar
  55. 55.
    Ingman WV, Owens PC, Armstrong DT. Differential regulation by FSH and IGF-I of extracellular matrix IGFBP-5 in bovine granulosa cells: effect of association with the oocyte. Mol Cell Endocrinol. 2000;164(1–2):53–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Li R, Norman RJ, Armstrong DT, Gilchrist RB. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol Reprod. 2000;63(3):839–45.PubMedCrossRefGoogle Scholar
  57. 57.
    Salustri A. Paracrine actions of oocytes in the mouse pre-ovulatory follicle. Int J Dev Biol. 2000;44(6):591–7.PubMedGoogle Scholar
  58. 58.
    Koks S, Velthut A, Sarapik A, Altmae S, Reinmaa E, Schalkwyk LC, Fernandes C, Lad HV, Soomets U, Jaakma U, et al. The differential transcriptome and ontology profiles of floating and cumulus granulosa cells in stimulated human antral follicles. Mol Hum Reprod. 2010;16(4):229–40.PubMedCrossRefGoogle Scholar
  59. 59.
    Diaz FJ, Wigglesworth K, Eppig JJ. Oocytes determine cumulus cell lineage in mouse ovarian follicles. J Cell Sci. 2007;120(Pt 8):1330–40.PubMedCrossRefGoogle Scholar
  60. 60.
    Latham KE, Bautista FD, Hirao Y, O’Brien MJ, Eppig JJ. Comparison of protein synthesis patterns in mouse cumulus cells and mural granulosa cells: effects of follicle-stimulating hormone and insulin on granulosa cell differentiation in vitro. Biol Reprod. 1999;61(2):482–92.PubMedCrossRefGoogle Scholar
  61. 61.
    Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Peng XR, Hsueh AJ, LaPolt PS, Bjersing L, Ny T. Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation. Endocrinology. 1991;129(6):3200–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Eppig JJ, Wigglesworth K, Pendola F, Hirao Y. Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol Reprod. 1997;56(4):976–84.PubMedCrossRefGoogle Scholar
  64. 64.
    Shimada M, Terada T. FSH and LH induce progesterone production and progesterone receptor synthesis in cumulus cells: a requirement for meiotic resumption in porcine oocytes. Mol Hum Reprod. 2002;8(7):612–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Shimada M, Hernandez-Gonzalez I, Gonzalez-Robayna I, Richards JS. Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and pro­gesterone receptor. Mol Endocrinol. 2006;20(6):1352–65.PubMedCrossRefGoogle Scholar
  66. 66.
    Guidobaldi HA, Teves ME, Unates DR, Anastasia A, Giojalas LC. Progesterone from the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus complex. PLoS One. 2008;3(8):e3040.PubMedCrossRefGoogle Scholar
  67. 67.
    Schuetz AW, Dubin NH. Progesterone and prostaglandin secretion by ovulated rat cumulus cell-oocyte complexes. Endocrinology. 1981;108(2):457–63.PubMedCrossRefGoogle Scholar
  68. 68.
    Erickson GF, Shimasaki S. The role of the oocyte in folliculogenesis. Trends Endocrinol Metab. 2000;11(5):193–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG, Charlton HM. The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology. 2000;141(5):1795–803.PubMedCrossRefGoogle Scholar
  70. 70.
    Jimenez-Movilla M, Aviles M, Gomez-Torres MJ, Fernandez-Colom PJ, Castells MT, de Juan J, Romeu A, Ballesta J. Carbohydrate analysis of the zona pellucida and cortical granules of human oocytes by means of ultrastructural cytochemistry. Hum Reprod. 2004;19(8):1842–55.PubMedCrossRefGoogle Scholar
  71. 71.
    Lunn MO, Wright SJ. Analysis of the ltrastructure of the anine ona ellucida. Microsc Microanal. 2006;12(2):270–1.CrossRefGoogle Scholar
  72. 72.
    Yokoo M, Sato E. Cumulus-oocyte complex interactions during oocyte maturation. Int Rev Cytol. 2004;235:251–91.PubMedCrossRefGoogle Scholar
  73. 73.
    Russell DL, Robker RL. Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum Reprod Update. 2007;13(3):289–312.PubMedCrossRefGoogle Scholar
  74. 74.
    Russell DL, Salustri A. Extracellular matrix of the cumulus-oocyte complex. Semin Reprod Med. 2006;24(4):217–27.PubMedCrossRefGoogle Scholar
  75. 75.
    Munne S, Grifo J, Cohen J, Weier HU. Chromosome abnormalities in human arrested preimplantation embryos: a multiple-probe FISH study. Am J Hum Genet. 1994;55(1):150–9.PubMedGoogle Scholar
  76. 76.
    Sirard MA, Dufort I, Coenen K, Tremblay K, Massicotte L, Robert C. The use of genomics and proteomics to understand oocyte and early embryo functions in farm animals. Reprod Suppl. 2003;61:117–29.PubMedGoogle Scholar
  77. 77.
    Lucidi P, Bernabo N, Turriani M, Barboni B, Mattioli M. Cumulus cells steroidogenesis is influenced by the degree of oocyte maturation. Reprod Biol Endocrinol. 2003;1:45.PubMedCrossRefGoogle Scholar
  78. 78.
    Adriaens I, Cortvrindt R, Smitz J. Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum Reprod. 2004;19(2):398–408.PubMedCrossRefGoogle Scholar
  79. 79.
    Ali A, Sirard MA. Protein kinases influence bovine oocyte competence during short-term treatment with recombinant human follicle stimulating hormone. Reproduction. 2005;130(3):303–10.PubMedCrossRefGoogle Scholar
  80. 80.
    Meinecke B, Meinecke-Tillmann S. Effects of alpha-amanitin on nuclear maturation of porcine oocytes in vitro. J Reprod Fertil. 1993;98(1):195–201.PubMedCrossRefGoogle Scholar
  81. 81.
    Panigone S, Hsieh M, Fu M, Persani L, Conti M. LH ignaling in reovulatory ollicles nvolves arly ctivation of the EGFR athway. Mol Endocrinol. 2008;22:924–36.PubMedCrossRefGoogle Scholar
  82. 82.
    Kawashima I, Okazaki T, Noma N, Nishibori M, Yamashita Y, Shimada M. Sequential exposure of porcine cumulus cells to FSH and/or LH is critical for appropriate expression of steroidogenic and ovulation-related genes that impact oocyte maturation in vivo and in vitro. Reproduction. 2008;136(1):9–21.PubMedCrossRefGoogle Scholar
  83. 83.
    Dieleman SJ, Hendriksen PJ, Viuff D, Thomsen PD, Hyttel P, Knijn HM, Wrenzycki C, Kruip TA, Niemann H, Gadella BM, et al. Effects of in vivo prematuration and in vivo final maturation on developmental capacity and quality of pre-implantation embryos. Theriogenology. 2002;57(1):5–20.PubMedCrossRefGoogle Scholar
  84. 84.
    Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Hum Reprod. 2007;22(12):3069–77.PubMedCrossRefGoogle Scholar
  85. 85.
    Filicori M. The role of luteinizing hormone in folliculogenesis and ovulation induction. Fertil Steril. 1999;71(3):405–14.PubMedCrossRefGoogle Scholar
  86. 86.
    Abbott AL, Xu Z, Kopf GS, Ducibella T, Schultz RM. In vitro culture retards spontaneous activation of cell cycle progression and cortical granule exocytosis that normally occur in in vivo unfertilized mouse eggs. Biol Reprod. 1998;59(6):1515–21.PubMedCrossRefGoogle Scholar
  87. 87.
    Assidi M, Montag M, Van Der Ven K, Sirard MA. Biomarkers of human oocyte developmental competence expressed in cumulus cells before ICSI: a preliminary study. J Assist Reprod Genet. 2011;28(2):173–88.PubMedCrossRefGoogle Scholar
  88. 88.
    Assou S, Haouzi D, Mahmoud K, Aouacheria A, Guillemin Y, Pantesco V, Reme T, Dechaud H, De Vos J, Hamamah S. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol Hum Reprod. 2008;14(12):711–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Ouandaogo ZG, Haouzi D, Assou S, Dechaud H, Kadoch IJ, De Vos J, Hamamah S. Human cumulus cells molecular signature in relation to oocyte nuclear maturity stage. PLoS One. 2011;6(11):e27179.PubMedCrossRefGoogle Scholar
  90. 90.
    Adriaenssens T, Wathlet S, Segers I, Verheyen G, De Vos A, Van der Elst J, Coucke W, Devroey P, Smitz J. Cumulus cell gene expression is associated with oocyte developmental quality and influenced by patient and treatment characteristics. Hum Reprod. 2010;25(5):1259–70.PubMedCrossRefGoogle Scholar
  91. 91.
    Tatemoto H, Terada T. Time-dependent effects of cycloheximide and alpha-amanitin on meiotic resumption and progression in bovine follicular oocytes. Theriogenology. 1995;43(6):1107–13.PubMedCrossRefGoogle Scholar
  92. 92.
    Motlik J, Fulka Jr J, Prochazka R, Rimkevicova Z, Kubelka M, Fulka J. RNA and protein synthesis requirements for the resumption of meiosis in rabbit oocytes: the role of cumulus cells. Reprod Nutr Dev. 1989;29(5):601–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, O’Brien MJ, Matzuk MM, Shimasaki S, Eppig JJ. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development. 2007;134(14):2593–603.PubMedCrossRefGoogle Scholar
  94. 94.
    Su YQ, Sugiura K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, Matzuk MM, Eppig JJ. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development. 2008;135(1):111–21.PubMedCrossRefGoogle Scholar
  95. 95.
    Bruzzone R, White TW, Paul DL. Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem. 1996;238(1):1–27.PubMedCrossRefGoogle Scholar
  96. 96.
    Vozzi C, Formenton A, Chanson A, Senn A, Sahli R, Shaw P, Nicod P, Germond M, Haefliger JA. Involvement of connexin 43 in meiotic maturation of bovine oocytes. Reproduction. 2001;122(4):619–28.PubMedCrossRefGoogle Scholar
  97. 97.
    Atef A, Francois P, Christian V, Marc-Andre S. The potential role of gap junction communication between cumulus cells and bovine oocytes during in vitro maturation. Mol Reprod Dev. 2005;71(3):358–67.PubMedCrossRefGoogle Scholar
  98. 98.
    Assidi M, Dieleman SJ, Sirard MA. Cumulus cell gene expression following the LH surge in bovine preovulatory follicles: potential early markers of oocyte competence. Reproduction. 2010;140(6):835–52.PubMedCrossRefGoogle Scholar
  99. 99.
    McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, Amato P, Matzuk MM. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod. 2004;19(12):2869–74.PubMedCrossRefGoogle Scholar
  100. 100.
    Hernandez-Gonzalez I, Gonzalez-Robayna I, Shimada M, Wayne CM, Ochsner SA, White L, Richards JS. Gene expression profiles of cumulus cell oocyte complexes during ovulation reveal cumulus cells express neuronal and immune-related genes: does this expand their role in the ovulation process? Mol Endocrinol. 2006;20(6):1300–21.PubMedCrossRefGoogle Scholar
  101. 101.
    Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol Hum Reprod. 2010;16:715–25.PubMedCrossRefGoogle Scholar
  102. 102.
    Assou S, Anahory T, Pantesco V, Le Carrour T, Pellestor F, Klein B, Reyftmann L, Dechaud H, De Vos J, Hamamah S. The human cumulus–oocyte complex gene-expression profile. Hum Reprod. 2006;21(7):1705–19.PubMedCrossRefGoogle Scholar
  103. 103.
    Bettegowda A, Patel OV, Lee KB, Park KE, Salem M, Yao J, Ireland JJ, Smith GW. Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: functional and diagnostic implications. Biol Reprod. 2008;79(2):301–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Assidi M, Dufort I, Ali A, Hamel M, Algriany O, Dielemann S, Sirard MA. Identification of otential arkers of ocyte ompetence xpressed in ovine umulus ells atured with ollicle-timulating ormone and/or horbol yristate cetate n itro. Biol Reprod. 2008;79(2):209–22.PubMedCrossRefGoogle Scholar
  105. 105.
    Tesfaye D, Ghanem N, Carter F, Fair T, Sirard MA, Hoelker M, Schellander K, Lonergan P. Gene expression profile of cumulus cells derived from cumulus-oocyte complexes matured either in vivo or in vitro. Reprod Fertil Dev. 2009;21(3):451–61.PubMedCrossRefGoogle Scholar
  106. 106.
    Zhang X, Jafari N, Barnes RB, Confino E, Milad M, Kazer RR. Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertil Steril. 2005;83 Suppl 1:1169–79.PubMedCrossRefGoogle Scholar
  107. 107.
    Dekel N, Hillensjo T, Kraicer PF. Maturational effects of gonadotropins on the cumulus-oocyte complex of the rat. Biol Reprod. 1979;20(2):191–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Eppig JJ, Chesnel F, Hirao Y, OBrien MJ, Pendola FL, Watanabe S, Wigglesworth K. Oocyte control of granulosa cell development: how and why. Hum Reprod. 1997;12(11 Suppl):127–32.PubMedGoogle Scholar
  109. 109.
    Racowsky C. Effect of forskolin on maintenance of meiotic arrest and stimulation of cumulus expansion, progesterone and cyclic AMP production by pig oocyte-cumulus complexes. J Reprod Fertil. 1985;74(1):9–21.PubMedCrossRefGoogle Scholar
  110. 110.
    Ashkenazi H, Cao X, Motola S, Popliker M, Conti M, Tsafriri A. Epidermal growth factor family members: endogenous mediators of the ovulatory response. Endocrinology. 2005;146(1):77–84.PubMedCrossRefGoogle Scholar
  111. 111.
    Tirone E, DAlessandris C, Hascall VC, Siracusa G, Salustri A. Hyaluronan synthesis by mouse cumulus cells is regulated by interactions between follicle-stimulating hormone (or epidermal growth factor) and a soluble oocyte factor (or transforming growth factor beta1). J Biol Chem. 1997;272(8):4787–94.PubMedCrossRefGoogle Scholar
  112. 112.
    Mattioli M, Barboni B. Signal transduction mechanism for LH in the cumulus-oocyte complex. Mol Cell Endocrinol. 2000;161(1–2):19–23.PubMedCrossRefGoogle Scholar
  113. 113.
    Liu Z, de Matos DG, Fan HY, Shimada M, Palmer S, Richards JS. Interleukin-6: an autocrine regulator of the mouse cumulus cell-oocyte complex expansion process. Endocrinology. 2009;150(7):3360–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Salustri A, Yanagishita M, Hascall VC. Synthesis and accumulation of hyaluronic acid and proteoglycans in the mouse cumulus cell-oocyte complex during follicle-stimulating hormone-induced mucification. J Biol Chem. 1989;264(23):13840–7.PubMedGoogle Scholar
  115. 115.
    Carrette O, Nemade RV, Day AJ, Brickner A, Larsen WJ. TSG-6 is concentrated in the extracellular matrix of mouse cumulus oocyte complexes through hyaluronan and inter-alpha-inhibitor binding. Biol Reprod. 2001;65(1):301–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Kahmann JD, OBrien R, Werner JM, Heinegard D, Ladbury JE, Campbell ID, Day AJ. Localization and characterization of the hyaluronan-binding site on the link module from human TSG-6. Structure. 2000;8(7):763–74.PubMedCrossRefGoogle Scholar
  117. 117.
    Knudson W, Aguiar DJ, Hua Q, Knudson CB. CD44-anchored hyaluronan-rich pericellular matrices: an ultrastructural and biochemical analysis. Exp Cell Res. 1996;228(2):216–28.PubMedCrossRefGoogle Scholar
  118. 118.
    Lesley J, Gal I, Mahoney DJ, Cordell MR, Rugg MS, Hyman R, Day AJ, Mikecz K. TSG-6 modulates the interaction between hyaluronan and cell surface CD44. J Biol Chem. 2004;279(24):25745–54.PubMedCrossRefGoogle Scholar
  119. 119.
    Bottazzi B, Bastone A, Doni A, Garlanda C, Valentino S, Deban L, Maina V, Cotena A, Moalli F, Vago L, et al. The long pentraxin PTX3 as a link among innate immunity, inflammation, and female fertility. J Leukoc Biol. 2006;79(5):909–12.PubMedCrossRefGoogle Scholar
  120. 120.
    Diaz FJ, Sugiura K, Eppig JJ. Regulation of Pcsk6 expression during the preantral to antral follicle transition in mice: opposing roles of FSH and oocytes. Biol Reprod. 2008;78(1):176–83.PubMedCrossRefGoogle Scholar
  121. 121.
    Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol. 1999;13(6):1035–48.PubMedCrossRefGoogle Scholar
  122. 122.
    Sutovsky P, Flechon JE, Pavlok A. F-actin is involved in control of bovine cumulus expansion. Mol Reprod Dev. 1995;41(4):521–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Russell DL, Doyle KM, Ochsner SA, Sandy JD, Richards JS. Processing and localization of ADAMTS-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation. J Biol Chem. 2003;278(43):42330–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Zhuo L, Kimata K. Cumulus oophorus extracellular matrix: its construction and regulation. Cell Struct Funct. 2001;26(4):189–96.PubMedCrossRefGoogle Scholar
  125. 125.
    Edson MA, Nagaraja AK, Matzuk MM. The mammalian ovary from genesis to revelation. Endocr Rev. 2009;30(6):624–712.PubMedCrossRefGoogle Scholar
  126. 126.
    Sutovsky P, Flechon JE, Flechon B, Motlik J, Peynot N, Chesne P, Heyman Y. Dynamic changes of gap junctions and cytoskeleton during in vitro culture of cattle oocyte cumulus complexes. Biol Reprod. 1993;49(6):1277–87.PubMedCrossRefGoogle Scholar
  127. 127.
    Sutovsky P, Flechon JE, Pavlok A. Microfilaments, microtubules and intermediate filaments fulfil differential roles during gonadotropin-induced expansion of bovine cumulus oophorus. Reprod Nutr Dev. 1994;34(5):415–25.PubMedCrossRefGoogle Scholar
  128. 128.
    Thomas RE, Armstrong DT, Gilchrist RB. Bovine cumulus cell-oocyte gap junctional communication during in vitro maturation in response to manipulation of cell-specific cyclic adenosine 3,5-monophosophate levels. Biol Reprod. 2004;70(3):548–56.PubMedCrossRefGoogle Scholar
  129. 129.
    Anderson E, Albertini DF. Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J Cell Biol. 1976;71(2):680–6.PubMedCrossRefGoogle Scholar
  130. 130.
    Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol. 2000;226(2):167–79.PubMedCrossRefGoogle Scholar
  131. 131.
    Simon AM, Goodenough DA, Li E, Paul DL. Female infertility in mice lacking connexin 37. Nature. 1997;385(6616):525–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Juneja SC, Barr KJ, Enders GC, Kidder GM. Defects in the germ line and gonads of mice lacking connexin43. Biol Reprod. 1999;60(5):1263–70.PubMedCrossRefGoogle Scholar
  133. 133.
    Burghardt RC, Matheson RL. Gap junction amplification in rat ovarian granulosa cells. I. A direct response to follicle-stimulating hormone. Dev Biol. 1982;94(1):206–15.PubMedCrossRefGoogle Scholar
  134. 134.
    Granot I, Dekel N. Developmental expression and regulation of the gap junction protein and transcript in rat ovaries. Mol Reprod Dev. 1997;47(3):231–9.PubMedCrossRefGoogle Scholar
  135. 135.
    Sommersberg B, Bulling A, Salzer U, Frohlich U, Garfield RE, Amsterdam A, Mayerhofer A. Gap junction communication and connexin 43 gene expression in a rat granulosa cell line: regulation by follicle-stimulating hormone. Biol Reprod. 2000;63(6):1661–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Luciano AM, Lodde V, Beretta MS, Colleoni S, Lauria A, Modina S. Developmental capability of denuded bovine oocyte in a co-culture system with intact cumulus-oocyte complexes: role of cumulus cells, cyclic adenosine 3,5-monophosphate, and glutathione. Mol Reprod Dev. 2005;71(3):389–97.PubMedCrossRefGoogle Scholar
  137. 137.
    Memili E, Peddinti D, Shack LA, Nanduri B, McCarthy F, Sagirkaya H, Burgess SC. Bovine germinal vesicle oocyte and cumulus cell proteomics. Reproduction. 2007;133(6):1107–20.PubMedCrossRefGoogle Scholar
  138. 138.
    Sugiura K, Pendola FL, Eppig JJ. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol. 2005;279(1):20–30.PubMedCrossRefGoogle Scholar
  139. 139.
    Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci USA. 1967;58(2):560–7.PubMedCrossRefGoogle Scholar
  140. 140.
    Leese HJ, Barton AM. Production of pyruvate by isolated mouse cumulus cells. J Exp Zool. 1985;234(2):231–6.PubMedCrossRefGoogle Scholar
  141. 141.
    Thompson JG, Lane M, Gilchrist RB. Metabolism of the bovine cumulus-oocyte complex and influence on subsequent developmental competence. Soc Reprod Fertil Suppl. 2007;64:179–90.PubMedGoogle Scholar
  142. 142.
    Eppig JJ. Analysis of mouse oogenesis in vitro. Oocyte isolation and the utilization of exogenous energy sources by growing oocytes. J Exp Zool. 1976;198(3):375–82.PubMedCrossRefGoogle Scholar
  143. 143.
    Mayes MA, Laforest MF, Guillemette C, Gilchrist RB, Richard FJ. Adenosine 5-monophosphate kinase-activated protein kinase (PRKA) activators delay meiotic resumption in porcine oocytes. Biol Reprod. 2007;76(4):589–97.PubMedCrossRefGoogle Scholar
  144. 144.
    Colonna R, Cecconi S, Buccione R, Mangia F. Amino acid transport systems in growing mouse oocytes. Cell Biol Int Rep. 1983;7(12):1007–15.PubMedCrossRefGoogle Scholar
  145. 145.
    Eppig JJ, Pendola FL, Wigglesworth K, Pendola JK. Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol Reprod. 2005;73(2):351–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Haghighat N, Van Winkle LJ. Developmental change in follicular cell-enhanced amino acid uptake into mouse oocytes that depends on intact gap junctions and transport system Gly. J Exp Zool. 1990;253(1):71–82.PubMedCrossRefGoogle Scholar
  147. 147.
    Perret BP, Parinaud J, Ribbes H, Moatti JP, Pontonnier G, Chap H, Douste-Blazy L. Lipoprotein and phospholipid distribution in human follicular fluids. Fertil Steril. 1985;43(3):405–9.PubMedGoogle Scholar
  148. 148.
    Comiskey M, Warner CM. Spatio-temporal localization of membrane lipid rafts in mouse oocytes and cleaving preimplantation embryos. Dev Biol. 2007;303(2):727–39.PubMedCrossRefGoogle Scholar
  149. 149.
    Mingoti GZ, Garcia JM, Rosa-e-Silva AA. Steroidogenesis in cumulus cells of bovine cumulus-oocyte-complexes matured in vitro with BSA and different concentrations of steroids. Anim Reprod Sci. 2002;69(3–4):175–86.PubMedCrossRefGoogle Scholar
  150. 150.
    Ali A, Sirard MA. The effects of 17beta-estradiol and protein supplement on the response to purified and recombinant follicle stimulating hormone in bovine oocytes. Zygote. 2002;10(1):65–71.PubMedCrossRefGoogle Scholar
  151. 151.
    Li Q, McKenzie LJ, Matzuk MM. Revisiting oocyte-somatic cell interactions: in search of novel intrafollicular predictors and regulators of oocyte developmental competence. Mol Hum Reprod. 2008;14(12):673–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Loutradis D, Beretsos P, Arabatzi E, Anagnostou E, Drakakis P. The role of steroid hormones in ART. J Steroid Biochem Mol Biol. 2008;112(1–3):1–4.PubMedCrossRefGoogle Scholar
  153. 153.
    Tesarik J, Mendoza C. Nongenomic effects of 17 beta-estradiol on maturing human oocytes: relationship to oocyte developmental potential. J Clin Endocrinol Metab. 1995;80(4):1438–43.PubMedCrossRefGoogle Scholar
  154. 154.
    el-Fouly MA, Cook B, Nekola M, Nalbandov AV. Role of the ovum in follicular luteinization. Endocrinology. 1970;87(2):286–93.PubMedCrossRefGoogle Scholar
  155. 155.
    Vanderhyden BC, Cohen JN, Morley P. Mouse oocytes regulate granulosa cell steroidogenesis. Endocrinology. 1993;133(1):423–6.PubMedCrossRefGoogle Scholar
  156. 156.
    Wise T, Suss U, Stranzinger G, Wuthrich K, Maurer RR. Cumulus and oocyte maturation and in vitro and in vivo fertilization of oocytes in relation to follicular steroids, prolactin, and glycosaminoglycans throughout the estrous period in superovulated heifers with a normal LH surge, no detectable LH surge, and progestin inhibition of LH surge. Domest Anim Endocrinol. 1994;11(1):59–86.PubMedCrossRefGoogle Scholar
  157. 157.
    Yamashita Y, Hishinuma M, Shimada M. Activation of PKA, p38 MAPK and ERK1/2 by gonadotropins in cumulus cells is critical for induction of EGF-like factor and TACE/ADAM17 gene expression during in vitro maturation of porcine COCs. J Ovarian Res. 2009;2:20.PubMedCrossRefGoogle Scholar
  158. 158.
    Downs SM, Hunzicker-Dunn M. Differential regulation of oocyte maturation and cumulus expansion in the mouse oocyte-cumulus cell complex by site-selective analogs of cyclic adenosine monophosphate. Dev Biol. 1995;172(1):72–85.PubMedCrossRefGoogle Scholar
  159. 159.
    Bornslaeger EA, Mattei P, Schultz RM. Involvement of cAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation. Dev Biol. 1986;114(2):453–62.PubMedCrossRefGoogle Scholar
  160. 160.
    Richards JS. New signaling pathways for hormones and cyclic adenosine 3,5-monophosphate action in endocrine cells. Mol Endocrinol. 2001;15(2):209–18.PubMedCrossRefGoogle Scholar
  161. 161.
    Ning G, Ouyang H, Wang S, Chen X, Xu B, Yang J, Zhang H, Zhang M, Xia G. 3,5-cyclic adenosine monophosphate response element binding protein up-regulated cytochrome P450 lanosterol 14alpha-demethylase expression involved in follicle-stimulating hormone-induced mouse oocyte maturation. Mol Endocrinol. 2008;22(7):1682–94.PubMedCrossRefGoogle Scholar
  162. 162.
    Ochsner SA, Day AJ, Rugg MS, Breyer RM, Gomer RH, Richards JS. Disrupted function of tumor necrosis factor-alpha-stimulated gene 6 blocks cumulus cell-oocyte complex expansion. Endocrinology. 2003;144(10):4376–84.PubMedCrossRefGoogle Scholar
  163. 163.
    Gonzalez-Robayna IJ, Alliston TN, Buse P, Firestone GL, Richards JS. Functional and subcellular changes in the A-kinase-signaling pathway: relation to aromatase and Sgk expression during the transition of granulosa cells to luteal cells. Mol Endocrinol. 1999;13(8):1318–37.PubMedCrossRefGoogle Scholar
  164. 164.
    Zhang M, Ouyang H, Xia G. The signal pathway of gonadotrophins-induced mammalian oocyte meiotic resumption. Mol Hum Reprod. 2009;15(7):399–409.PubMedCrossRefGoogle Scholar
  165. 165.
    Conti M. Specificity of the cyclic adenosine 3,5-monophosphate signal in granulosa cell function. Biol Reprod. 2002;67(6):1653–61.PubMedCrossRefGoogle Scholar
  166. 166.
    Webb RJ, Marshall F, Swann K, Carroll J. Follicle-stimulating hormone induces a gap junction-dependent dynamic change in [cAMP] and protein kinase a in mammalian oocytes. Dev Biol. 2002;246(2):441–54.PubMedCrossRefGoogle Scholar
  167. 167.
    Conti M, Andersen CB, Richard F, Mehats C, Chun SY, Horner K, Jin C, Tsafriri A. Role of cyclic nucleotide signaling in oocyte maturation. Mol Cell Endocrinol. 2002;187(1–2):153–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Sela-Abramovich S, Chorev E, Galiani D, Dekel N. Mitogen-activated protein kinase mediates luteinizing hormone-induced breakdown of communication and oocyte maturation in rat ovarian follicles. Endocrinology. 2005;146(3):1236–44.PubMedCrossRefGoogle Scholar
  169. 169.
    Thomas RE, Armstrong DT, Gilchrist RB. Differential effects of specific phosphodiesterase isoenzyme inhibitors on bovine oocyte meiotic maturation. Dev Biol. 2002;244(2):215–25.PubMedCrossRefGoogle Scholar
  170. 170.
    Sasseville M, Albuz FK, Cote N, Guillemette C, Gilchrist RB, Richard FJ. Characterization of novel phosphodiesterases in the bovine ovarian follicle. Biol Reprod. 2009;81(2):415–25.PubMedCrossRefGoogle Scholar
  171. 171.
    Norris RP, Ratzan WJ, Freudzon M, Mehlmann LM, Krall J, Movsesian MA, Wang H, Ke H, Nikolaev VO, Jaffe LA. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development. 2009;136(11):1869–78.PubMedCrossRefGoogle Scholar
  172. 172.
    Vaccari S, Weeks 2nd JL, Hsieh M, Menniti FS, Conti M. Cyclic GMP signaling is involved in the luteinizing hormone-dependent meiotic maturation of mouse oocytes. Biol Reprod. 2009;81(3):595–604.PubMedCrossRefGoogle Scholar
  173. 173.
    Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS. Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-lnduced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol. 2000;14(8):1283–300.PubMedCrossRefGoogle Scholar
  174. 174.
    Zhang L, Liang Y, Liu Y, Xiong CL. The role of brain-derived neurotrophic factor in mouse oocyte maturation in vitro involves activation of protein kinase B. Theriogenology. 2010;73(8):1096–103.PubMedCrossRefGoogle Scholar
  175. 175.
    Tripathi A, Kumar KV, Chaube SK. Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol. 2010;223(3):592–600.PubMedGoogle Scholar
  176. 176.
    Shimada M, Ito J, Yamashita Y, Okazaki T, Isobe N. Phosphatidylinositol 3-kinase in cumulus cells is responsible for both suppression of spontaneous maturation and induction of gonadotropin-stimulated maturation of porcine oocytes. J Endocrinol. 2003;179(1):25–34.PubMedCrossRefGoogle Scholar
  177. 177.
    Fan HY, Huo LJ, Chen DY, Schatten H, Sun QY. Protein kinase C and mitogen-activated protein kinase cascade in mouse cumulus cells: cross talk and effect on meiotic resumption of oocyte. Biol Reprod. 2004;70(4):1178–87.PubMedCrossRefGoogle Scholar
  178. 178.
    Shimada M, Maeda T, Terada T. Dynamic changes of connexin-43, gap junctional protein, in outer layers of cumulus cells are regulated by PKC and PI 3-kinase during meiotic resumption in porcine oocytes. Biol Reprod. 2001;64(4):1255–63.PubMedCrossRefGoogle Scholar
  179. 179.
    Su YQ, Xia GL, Byskov AG, Fu GD, Yang CR. Protein kinase C and intracellular calcium are involved in follicle-stimulating hormone-mediated meiotic resumption of cumulus cell-enclosed porcine oocytes in hypoxanthine-supplemented medium. Mol Reprod Dev. 1999;53(1):51–8.PubMedCrossRefGoogle Scholar
  180. 180.
    Fan HY, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick SM, Richards JS. MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science. 2009;324(5929):938–41.PubMedCrossRefGoogle Scholar
  181. 181.
    Downs SM, Chen J. EGF-like peptides mediate FSH-induced maturation of cumulus cell-enclosed mouse oocytes. Mol Reprod Dev. 2008;75(1):105–14.PubMedCrossRefGoogle Scholar
  182. 182.
    Li M, Liang CG, Xiong B, Xu BZ, Lin SL, Hou Y, Chen DY, Schatten H, Sun QY. PI3-kinase and mitogen-activated protein kinase in cumulus cells mediate EGF-induced meiotic resumption of porcine oocyte. Domest Anim Endocrinol. 2008;34(4):360–71.PubMedCrossRefGoogle Scholar
  183. 183.
    Chen X, Zhou B, Yan J, Xu B, Tai P, Li J, Peng S, Zhang M, Xia G. Epidermal growth factor receptor activation by protein kinase C is necessary for FSH-induced meiotic resumption in porcine cumulus-oocyte complexes. J Endocrinol. 2008;197(2):409–19.PubMedCrossRefGoogle Scholar
  184. 184.
    Mehlmann LM. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction. 2005;130(6):791–9.PubMedCrossRefGoogle Scholar
  185. 185.
    Liang CG, Su YQ, Fan HY, Schatten H, Sun QY. Mechanisms regulating oocyte meiotic resumption: roles of mitogen-activated protein kinase. Mol Endocrinol. 2007;21(9):2037–55.PubMedCrossRefGoogle Scholar
  186. 186.
    Pangas SA, Jorgez CJ, Matzuk MM. Growth differentiation factor 9 regulates expression of the bone morphogenetic protein antagonist gremlin. J Biol Chem. 2004;279(31):32281–6.PubMedCrossRefGoogle Scholar
  187. 187.
    Hussein TS, Thompson JG, Gilchrist RB. Oocyte-secreted factors enhance oocyte developmental competence. Dev Biol. 2006;296(2):514–21.PubMedCrossRefGoogle Scholar
  188. 188.
    Drummond AE. TGFbeta signalling in the development of ovarian function. Cell Tissue Res. 2005;322(1):107–15.PubMedCrossRefGoogle Scholar
  189. 189.
    Dragovic RA, Ritter LJ, Schulz SJ, Amato F, Thompson JG, Armstrong DT, Gilchrist RB. Oocyte-secreted factor activation of SMAD 2/3 signaling enables initiation of mouse cumulus cell expansion. Biol Reprod. 2007;76(5):848–57.PubMedCrossRefGoogle Scholar
  190. 190.
    Hess KA, Chen L, Larsen WJ. Inter-alpha-inhibitor binding to hyaluronan in the cumulus extracellular matrix is required for optimal ovulation and development of mouse oocytes. Biol Reprod. 1999;61(2):436–43.PubMedCrossRefGoogle Scholar
  191. 191.
    Mittaz L, Russell DL, Wilson T, Brasted M, Tkalcevic J, Salamonsen LA, Hertzog PJ, Pritchard MA. Adamts-1 is essential for the development and function of the urogenital system. Biol Reprod. 2004;70(4):1096–105.PubMedCrossRefGoogle Scholar
  192. 192.
    Fulop C, Szanto S, Mukhopadhyay D, Bardos T, Kamath RV, Rugg MS, Day AJ, Salustri A, Hascall VC, Glant TT, et al. Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice. Development. 2003;130(10):2253–61.PubMedCrossRefGoogle Scholar
  193. 193.
    Richards JS. Ovulation: new factors that prepare the oocyte for fertilization. Mol Cell Endocrinol. 2005;234(1–2):75–9.PubMedCrossRefGoogle Scholar
  194. 194.
    Espey LL. Ovulation as an inflammatory reaction–a hypothesis. Biol Reprod. 1980;22(1):73–106.PubMedCrossRefGoogle Scholar
  195. 195.
    Espey LL. Current status of the hypothesis that mammalian ovulation is comparable to an inflammatory reaction. Biol Reprod. 1994;50(2):233–8.PubMedCrossRefGoogle Scholar
  196. 196.
    Robker RL, Russell DL, Espey LL, Lydon JP, OMalley BW, Richards JS. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci USA. 2000;97(9):4689–94.PubMedCrossRefGoogle Scholar
  197. 197.
    Machelon V, Emilie D. Production of ovarian cytokines and their role in ovulation in the mammalian ovary. Eur Cytokine Netw. 1997;8(2):137–43.PubMedGoogle Scholar
  198. 198.
    Shimada M, Hernandez-Gonzalez I, Gonzalez-Robanya I, Richards JS. Induced expression of pattern recognition receptors in cumulus oocyte complexes: novel evidence for innate immune-like functions during ovulation. Mol Endocrinol. 2006;20(12):3228–39.PubMedCrossRefGoogle Scholar
  199. 199.
    Espey LL, Yoshioka S, Russell DL, Robker RL, Fujii S, Richards JS. Ovarian expression of a disintegrin and metalloproteinase with thrombospondin motifs during ovulation in the gonadotropin-primed immature rat. Biol Reprod. 2000;62(4):1090–5.PubMedCrossRefGoogle Scholar
  200. 200.
    Saito H, Kaneko T, Takahashi T, Kawachiya S, Saito T, Hiroi M. Hyaluronan in follicular fluids and fertilization of oocytes. Fertil Steril. 2000;74(6):1148–52.PubMedCrossRefGoogle Scholar
  201. 201.
    Hong SJ, Chiu PC, Lee KF, Tse JY, Ho PC, Yeung WS. Cumulus cells and their extracellular matrix affect the quality of the spermatozoa penetrating the cumulus mass. Fertil Steril. 2009;92(3):971–8.PubMedCrossRefGoogle Scholar
  202. 202.
    Chiu PC, Chung MK, Koistinen R, Koistinen H, Seppala M, Ho PC, Ng EH, Lee KF, Yeung WS. Cumulus oophorus-associated glycodelin-C displaces sperm-bound glycodelin-A and -F and stimulates spermatozoa-zona pellucida binding. J Biol Chem. 2007;282(8):5378–88.PubMedCrossRefGoogle Scholar
  203. 203.
    Bains R, Miles DM, Carson RJ, Adeghe J. Hyaluronic acid increases motility/intracellular CA2+ concentration in human sperm in vitro. Arch Androl. 2001;47(2):119–25.PubMedCrossRefGoogle Scholar
  204. 204.
    Sun F, Bahat A, Gakamsky A, Girsh E, Katz N, Giojalas LC, Tur-Kaspa I, Eisenbach M. Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum Reprod. 2005;20(3):761–7.PubMedCrossRefGoogle Scholar
  205. 205.
    Oren-Benaroya R, Orvieto R, Gakamsky A, Pinchasov M, Eisenbach M. The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum Reprod. 2008;23(10):2339–45.PubMedCrossRefGoogle Scholar
  206. 206.
    Tanghe S, Van Soom A, Mehrzad J, Maes D, Duchateau L, de Kruif A. Cumulus contributions during bovine fertilization in vitro. Theriogenology. 2003;60(1):135–49.PubMedCrossRefGoogle Scholar
  207. 207.
    Wassarman PM. Contribution of mouse egg zona pellucida glycoproteins to gamete recognition during fertilization. J Cell Physiol. 2005;204(2):388–91.PubMedCrossRefGoogle Scholar
  208. 208.
    Bansal P, Gupta SK. Binding characteristics of sperm with recombinant human zona pellucida glycoprotein-3 coated beads. Indian J Med Res. 2009;130(1):37–43.PubMedGoogle Scholar
  209. 209.
    Sutovsky P, Manandhar G, McCauley TC, Caamano JN, Sutovsky M, Thompson WE, Day BN. Proteasomal interference prevents zona pellucida penetration and fertilization in mammals. Biol Reprod. 2004;71(5):1625–37.PubMedCrossRefGoogle Scholar
  210. 210.
    Ni Y, Li K, Xu W, Song L, Yao K, Zhang X, Huang H, Zhang Y, Shi QX. Acrosome reaction induced by recombinant human zona pellucida 3 peptides rhuZP3a22 approximately 176 and rhuZP3b177 approximately 348 and their mechanism. J Androl. 2007;28(3):381–8.PubMedCrossRefGoogle Scholar
  211. 211.
    Goovaerts IG, Leroy JL, Van Soom A, De Clercq JB, Andries S, Bols PE. Effect of cumulus cell coculture and oxygen tension on the in vitro developmental competence of bovine zygotes cultured singly. Theriogenology. 2009;71(5):729–38.PubMedCrossRefGoogle Scholar
  212. 212.
    Zhang L, Jiang S, Wozniak PJ, Yang X, Godke RA. Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol Reprod Dev. 1995;40(3):338–44.PubMedCrossRefGoogle Scholar
  213. 213.
    Motta PM, Nottola SA, Pereda J, Croxatto HB, Familiari G. Ultrastructure of human cumulus oophorus: a transmission electron microscopic study on oviductal oocytes and fertilized eggs. Hum Reprod. 1995;10(9):2361–7.PubMedGoogle Scholar
  214. 214.
    Familiari G, Verlengia C, Nottola SA, Tripodi A, Hyttel P, Macchiarelli G, Motta PM. Ultrastructural features of bovine cumulus-corona cells surrounding oocytes, zygotes and early embryos. Reprod Fertil Dev. 1998;10(4):315–26.PubMedCrossRefGoogle Scholar
  215. 215.
    Stanger JD, Stevenson K, Lakmaker A, Woolcott R. Pregnancy following fertilization of zona-free, coronal cell intact human ova: Case Report. Hum Reprod. 2001;16(1):164–7.PubMedCrossRefGoogle Scholar
  216. 216.
    Hunter RH, Einer-Jensen N, Greve T. Somatic cell amplification of early pregnancy factors in the fallopian tube. Ital J Anat Embryol. 2005;110(2 Suppl 1):195–203.PubMedGoogle Scholar
  217. 217.
    Yoshida M. Role of glutathione in the maturation and fertilization of pig oocytes in vitro. Mol Reprod Dev. 1993;35(1):76–81.PubMedCrossRefGoogle Scholar
  218. 218.
    Qian Y, Shi WQ, Ding JT, Sha JH, Fan BQ. Predictive value of the area of expanded cumulus mass on development of porcine oocytes matured and fertilized in vitro. J Reprod Dev. 2003;49(2):167–74.PubMedCrossRefGoogle Scholar
  219. 219.
    van Montfoort AP, Geraedts JP, Dumoulin JC, Stassen AP, Evers JL, Ayoubi TA. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis. Mol Hum Reprod. 2008;14(3):157–68.PubMedCrossRefGoogle Scholar
  220. 220.
    Templeton A. Joseph Price oration. The multiple gestation epidemic: the role of the assisted reproductive technologies. Am J Obstet Gynecol. 2004;190(4):894–8.PubMedCrossRefGoogle Scholar
  221. 221.
    Adashi EY, Barri PN, Berkowitz R, Braude P, Bryan E, Carr J, Cohen J, Collins J, Devroey P, Frydman R, et al. Infertility therapy-associated multiple ­pregnancies (births): an ongoing epidemic. Reprod Biomed Online. 2003;7(5):515–42.PubMedCrossRefGoogle Scholar
  222. 222.
    Bromer JG, Seli E. Assessment of embryo viability in assisted reproductive technology: shortcomings of current approaches and the emerging role of metabolomics. Curr Opin Obstet Gynecol. 2008;20(3):234–41.PubMedCrossRefGoogle Scholar
  223. 223.
    Gerris JM. Single embryo transfer and IVF/ICSI outcome: a balanced appraisal. Hum Reprod Update. 2005;11(2):105–21.PubMedCrossRefGoogle Scholar
  224. 224.
    Pinborg A. IVF/ICSI twin pregnancies: risks and prevention. Hum Reprod Update. 2005;11(6):575–93.PubMedCrossRefGoogle Scholar
  225. 225.
    Sunde A. Significant reduction of twins with single embryo transfer in IVF. Reprod Biomed Online. 2007;15 Suppl 3:28–34.PubMedCrossRefGoogle Scholar
  226. 226.
    Gerris J. Single-embryo transfer versus multiple-embryo transfer. Reprod Biomed Online. 2009;18 Suppl 2:63–70.PubMedCrossRefGoogle Scholar
  227. 227.
    Hamamah S, Déchaud H, Hédon B. Transfert monoembryonnaire: une alternative pour prévenir et éviter les grossesses multiples. Gynecol Obstet Fertil. 2007;35(5):480–4.PubMedCrossRefGoogle Scholar
  228. 228.
    Anderson RA, Sciorio R, Kinnell H, Bayne RA, Thong KJ, de Sousa PA, Pickering S. Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to ­establish a pregnancy. Reproduction. 2009;138(4):629–37.PubMedCrossRefGoogle Scholar
  229. 229.
    Assou S, Haouzi D, De Vos J, Hamamah S. Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol Hum Reprod. 2010;16:531–8.PubMedCrossRefGoogle Scholar
  230. 230.
    Calder MD, Caveney AN, Sirard MA, Watson AJ. Effect of serum and cumulus cell expansion on marker gene transcripts in bovine cumulus-oocyte complexes during maturation in vitro. Fertil Steril. 2005;83 Suppl 1:1077–85.PubMedCrossRefGoogle Scholar
  231. 231.
    Patrizio P, Fragouli E, Bianchi V, Borini A, Wells D. Molecular methods for selection of the ideal oocyte. Reprod Biomed Online. 2007;15(3):346–53.PubMedCrossRefGoogle Scholar
  232. 232.
    Wang Q, Sun QY. Evaluation of oocyte quality: morphological, cellular and molecular predictors. Reprod Fertil Dev. 2007;19(1):1–12.PubMedCrossRefGoogle Scholar
  233. 233.
    Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, Sirard MA. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod. 2008;23(5):1118–27.PubMedCrossRefGoogle Scholar
  234. 234.
    Hamel M, Dufort I, Robert C, Leveille MC, Leader A, Sirard MA. Genomic assessment of follicular marker genes as pregnancy predictors for human IVF. Mol Hum Reprod. 2010;16(2):87–96.PubMedCrossRefGoogle Scholar
  235. 235.
    Cillo F, Brevini TA, Antonini S, Paffoni A, Ragni G, Gandolfi F. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction. 2007;134(5):645–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Faculté des sciences de l’agriculture et de l’alimentation, Pavillon des servicesUniversité LavalLavalCanada
  2. 2.Department of Obstetrics & GynecologyMcGill University Health Centre, McGill UniversityMontrealCanada
  3. 3.Department of Animal ScienceUniversité LavalLavalCanada

Personalised recommendations