Skip to main content

Origins of Oocyte Aneuploidy

  • Chapter
  • First Online:
Book cover Oogenesis

Abstract

The low reproductive potential of the human species is mainly caused by aneuploidies affecting embryo o fetal development. Although some of these aneuploidies may be paternally inherited or generated mitotically during preimplantation development, the vast majority of aneuploid karyotypes are generated at fertilization as an effect of meiotic errors occurring during the oocyte life cycle. Formation of an aneuploid oocyte derives from chromosome non-disjunction or premature segregation of sister chromatids at meiosis I or II. Less clear is why aneuploidy occurs. Advanced maternal age is strongly positively associated with the prevalence of aneuploidies, including Down syndrome, in spontaneously aborted fetuses and newborns. However, the links that connect maternal age and the cellular mechanisms that are involved in chromosome mal-segregation remain unknown. Factors that may play a role in the generation of aneuploidies are diverse. For example, number and position relative to the centromere of chiasmata formed in the process of recombination during fetal life influence the regularity of chromosome segregation during adult life. Alterations in the profile of the hormonal milieu are also suspected to cause oocyte aneuploidy. Environmental agents and certain lifestyles are believed to be additional factors that expose oocytes to an increased risk of chromosome mal-segregation. Better understanding of the nature and action of these factors could offer future opportunities for preventing at least part of the aneuploidies occurring in the female germ cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonde JP, Ernst E, Jensen TK, Hjollund NH, Kolstad H, Henriksen TB, Scheike T, Giwercman A, Olsen J, Skakkebaek NE. Relation between semen quality and fertility: a population based study of 430 first-pregnancy planners. Lancet. 1998;352:1172–7.

    Article  PubMed  CAS  Google Scholar 

  2. Pacchierotti F, Adler ID, Eichenlaub-Ritter U, Mailhes JB. Gender effects on the incidence of aneuploidy in mammalian germ cells. Environ Res. 2007;104:46–69.

    Article  PubMed  CAS  Google Scholar 

  3. Hassold T, Hall H, Hunt P. The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet. 2007;16:R203–8.

    Article  PubMed  CAS  Google Scholar 

  4. Angell RR. Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man. Hum Genet. 1991;86:383–7.

    Article  PubMed  CAS  Google Scholar 

  5. Vialard F, Boitrelle F, Molina-Gomes D, Selva J. Predisposition to aneuploidy in the oocyte. Cytogenet Genome Res. 2011;133:127–35.

    Article  PubMed  CAS  Google Scholar 

  6. Pellestor F, Andreo B, Arnal F, Humaeu C, Demaille J. Maternal ageing and chromosomal abnormalities: new data drawn from in vitro unfertilized human oocytes. Hum Genet. 2003;112:195–203.

    PubMed  Google Scholar 

  7. Shin M, Besser LM, Kucik JE, Lu C, Siffel C, Correa A. Congenital anomaly multistate prevalence and survival collaborative. Prevalence of Down syndrome among children and adolescents in 10 regions of the United States. Pediatrics. 2009;124:1565–71.

    Article  PubMed  Google Scholar 

  8. Fragouli E, Wells D, Delhanty JD. Chromosome abnormalities in the human oocyte. Cytogenet Genome Res. 2011;133:107–18.

    Article  PubMed  CAS  Google Scholar 

  9. Sachs ES, Jahoda MG, Los FJ, Pijpers L, Wladimiroff JW. Trisomy 21 mosaicism in gonads with unexpectedly high recurrence risks. Am J Med Genet Suppl. 1990;7:186–8.

    PubMed  CAS  Google Scholar 

  10. Delhanty JD. Mechanisms of aneuploidy induction in human oogenesis and early embryogenesis. Cytogenet Genome Res. 2005;111:237–44.

    Article  PubMed  CAS  Google Scholar 

  11. Van Blerkom J, Davis P. Differential effects of repeated ovarian stimulation on cytoplasmic and spindle organization in metaphase II mouse oocytes matured in vivo and in vitro. Hum Reprod. 2001;16:757–64.

    Article  PubMed  Google Scholar 

  12. Roberts R, Iatropoulou A, Ciantar D, Stark J, Becker DL, Franks S, Hardy K. Follicle-stimulating hormone affects metaphase I chromosome alignment and increases aneuploidy in mouse oocytes matured in vitro. Biol Reprod. 2005;72:107–18.

    Article  PubMed  CAS  Google Scholar 

  13. Nasseri A, Mukherjee T, Grifo JA, Noyes N, Krey L, Copperman AB. Elevated day 3 serum follicle stimulating hormone and/or estradiol may predict fetal aneuploidy. Fertil Steril. 1999;71:715–8.

    Article  PubMed  CAS  Google Scholar 

  14. Kline J, Kinney A, Levin B, Warburton D. Trisomic pregnancy and earlier age at menopause. Am J Hum Genet. 2000;67:395–404.

    Article  PubMed  CAS  Google Scholar 

  15. Hammoud I, Vialard F, Molina-Gomes D, Malagrida L, Bergere M, et al. Follicular fluid protein content (FSH, LH, PG4, E2, AMH) and oocyte aneuploidy. Hum Reprod. 2007;22:i159.

    Google Scholar 

  16. Xu YW, Peng YT, Wang B, Zeng YH, Zhuang GL, Zhou CQ. High follicle-stimulating hormone increases aneuploidy in human oocytes matured in vitro. Fertil Steril. 2011;95:99–104.

    Article  PubMed  CAS  Google Scholar 

  17. Hunt PA, Hassold TJ. Human female meiosis: what makes a good egg go bad? Trends Genet. 2008;24:86–93.

    Article  PubMed  CAS  Google Scholar 

  18. Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, Höög C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell. 2000;5:73–83.

    Article  PubMed  CAS  Google Scholar 

  19. Bolcun-Filas E, Costa Y, Speed R, Taggart M, Benavente R, De Rooij DG, Cooke HJ. SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J Cell Biol. 2007;176:741–7.

    Article  PubMed  CAS  Google Scholar 

  20. Baudat F, Manova K, Yuen JP, Jasin M, Keeney S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell. 2000;6:989–98.

    Article  PubMed  CAS  Google Scholar 

  21. Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou Jr H, Kolodner RD, Kucherlapati R, Pollard JW, Edelmann W. MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 2000;14:1085–97.

    PubMed  CAS  Google Scholar 

  22. Roeder GS, Bailis JM. The pachytene checkpoint. Trends Genet. 2000;16:395–403.

    Article  PubMed  CAS  Google Scholar 

  23. Vogt E, Kirsch-Volders M, Parry J, Eichenlaub-Ritter U. Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mutat Res. 2008;651:14–29.

    Article  PubMed  CAS  Google Scholar 

  24. Nasmyt K, Haering CH. The structure and function of SMC and kleisin complexes. Annu Rev Biochem. 2005;74:595–648.

    Article  Google Scholar 

  25. Kudo NR, Wassmann K, Anger M, Schuh M, Wirth KG, Xu H, Helmhart W, Kudo H, McKay M, de Maro Bellenberg JK, Nasmyth BP. Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell. 2006;126:135–46.

    Article  PubMed  CAS  Google Scholar 

  26. Ishiguro K, Watanabe Y. Chromosome cohesion in mitosis and meiosis. J Cell Sci. 2007;120:367–9.

    Article  PubMed  CAS  Google Scholar 

  27. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2:280–91.

    Article  PubMed  CAS  Google Scholar 

  28. Kim M, Kao GD. Newly identified roles for an old guardian: profound deficiency of the mitotic spindle checkpoint protein BubR1 leads to early aging and infertility. Cancer Biol Ther. 2005;4:164–5.

    Article  PubMed  CAS  Google Scholar 

  29. Eichenlaub-Ritter U, Vogt E, Yin H, Gosden R. Spindles, mitochondria and redox potential in ageing oocytes. Reprod Biomed Online. 2004;8:45–58.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang X, Wu XQ, Lu S, Guo YL, Ma X. Deficit of ­mitochondria-derived ATP during oxidative stress impairs mouse MII oocyte spindles. Cell Res. 2006;16:841–50.

    Article  PubMed  CAS  Google Scholar 

  31. Tarin JJ, Vendrell FJ, Ten J, Cano A. Antioxidant therapy counteracts the disturbing effects of diamide and maternal ageing on meiotic division and chromosomal segregation in mouse oocytes. Mol Hum Reprod. 1998;4:281–8.

    Article  PubMed  CAS  Google Scholar 

  32. Chen Y, Jefferson WN, Newbold RR, Padilla-Banks E, Pepling ME. Estradiol, progesterone, and genistein inhibit oocyte nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo. Endocrinology. 2007;148:3580–90.

    Article  PubMed  CAS  Google Scholar 

  33. Gallicchio L, Miller S, Greene T, Zacur H, Flaws JA. Premature ovarian failure among hairdressers. Hum Reprod. 2009;24:2636–41.

    Article  PubMed  CAS  Google Scholar 

  34. Tuttle AM, Stämpfli M, Foster WG. Cigarette smoke causes follicle loss in mice ovaries at concentrations representative of human exposure. Hum Reprod. 2009;24:1452–9.

    Article  PubMed  CAS  Google Scholar 

  35. Sadeu JC, Foster WG. Effect of in vitro exposure to benzo[a]pyrene, a component of cigarette smoke, on folliculogenesis, steroidogenesis and oocyte nuclear maturation. Reprod Toxicol. 2011;31:402–8.

    Article  PubMed  CAS  Google Scholar 

  36. Dechanet C, Anahory T, Mathieu Daude JC, Quantin X, Reyftmann L, Hamamah S, Hedon B, Dechaud H. Effects of cigarette smoking on reproduction. Hum Reprod Update. 2011;17:76–95.

    Article  PubMed  CAS  Google Scholar 

  37. Hunt PA, Koehler KE, Susiarjo M, Hodges CA, Ilagan A, Voigt RC, Thomas S, Thomas BF, Hassold TJ. Bisphenol A exposure causes meiotic aneuploidy in the female mouse. Curr Biol. 2003;7:546–53.

    Article  Google Scholar 

  38. Susiarjo M, Hassold TJ, Freeman E, Hunt PA. Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet. 2007;3:e5.

    Article  PubMed  Google Scholar 

  39. Sugiura-Ogasawara M, Ozaki Y, Sonta S, Makino T, Suzumori K. Exposure to bisphenol A is associated with recurrent miscarriage. Hum Reprod. 2005;20:2325–9.

    Article  PubMed  CAS  Google Scholar 

  40. Selesniemi K, Lee HJ, Muhlhauser A, Tilly JL. Prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies. Proc Natl Acad Sci USA. 2011;108:12319–24.

    Article  PubMed  CAS  Google Scholar 

  41. Fragouli E, Bianchi V, Patrizio P, Obradors A, Huang Z, Borini A, Delhanty JD, Wells D. Transcriptomic profiling of human oocytes: association of meiotic aneuploidy and altered oocyte gene expression. Mol Hum Reprod. 2010;16:570–82.

    Article  PubMed  CAS  Google Scholar 

  42. Grøndahl ML, Yding Andersen C, Bogstad J, Nielsen FC, Meinertz H, Borup R. Gene expression profiles of single human mature oocytes in relation to age. Hum Reprod. 2010;25:957–68.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liborio Stuppia M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Stuppia, L. (2013). Origins of Oocyte Aneuploidy. In: Coticchio, G., Albertini, D., De Santis, L. (eds) Oogenesis. Springer, London. https://doi.org/10.1007/978-0-85729-826-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-826-3_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-825-6

  • Online ISBN: 978-0-85729-826-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics