Advertisement

Oogenesis pp 195-207 | Cite as

Cytoskeletal Correlates of Oocyte Meiotic Divisions

  • Marie-Hélène VerlhacEmail author
  • Manuel Breuer
Chapter
  • 1.6k Downloads

Abstract

Meiosis in oocytes is demanding, requiring chromosomes to be evenly segregated between daughter cells while the cytoplasm should be unequally shared to benefit the oocyte. Indeed, oocytes are extremely large cells compared to most somatic cells and divide twice asymmetrically, giving rise to tiny abortive daughter cells, at least in species that do not reproduce by parthenogenesis. The asymmetry of oocyte meiotic divisions allows preservation of maternal mRNAs, proteins, and nutrients in the cytoplasm, accumulated during the growth phase of oogenesis. In mammals, this asymmetry supports early embryonic development before implantation of the blastocyst in the female reproductive tract. We will review in this chapter how mouse oocytes have resolved the difficult task of dividing asymmetrically at the level of the cell’s cytoskeleton. First, chromosome alignment and subsequent segregation happens without centrosome-mediated spindle assembly; second, the positioning modules employed to ensure strong asymmetry based on the actin cytoskeleton.

Keywords

Asymmetric Divisions Meiosis Oocyte Microtubules F-actin 

References

  1. 1.
    Brunet S, Verlhac MH. Positioning to get out of meiosis: the asymmetry of division. Hum Reprod Update. 2011;17:68–75.PubMedCrossRefGoogle Scholar
  2. 2.
    Azoury J, Verlhac M-H, Dumont J. Actin filaments: key players in the control of asymmetric divisions in mouse oocytes. Biol Cell. 2009;101:69–78.PubMedCrossRefGoogle Scholar
  3. 3.
    Kirschner M, Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell. 1986;45:329–42.PubMedCrossRefGoogle Scholar
  4. 4.
    Wollman R, Cytrynbaum EN, Jones JT, Meyer T, Scholey JM, Mogilner A. Efficient chromosome capture requires a bias in the “search and capture” process during mitotic-spindle assembly. Curr Biol. 2005;15:828–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Brunet S, Santa Maria A, Guillaud P, Dujardin D, Kubiak JZ, Maro B. Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase. J Cell Biol. 1999;146:1–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Kitajima TS, Ohsugi M, Ellenberg J. Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell. 2011;146:568–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Szöllösi D, Calarco P, Donahue RP. Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J Cell Sci. 1972;11:521–41.PubMedGoogle Scholar
  8. 8.
    Maro B, Howlett SK, Webb M. Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes. J Cell Biol. 1985;101:1665–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Calarco-Gillam PD, Siebert MC, Hubble R, Mitchison T, Kirschner M. Centrosome development in early mouse embryos as defined by an autoantibody against pericentriolar material. Cell. 1983;35:621–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Gueth-Hallonet C, Antony C, Aghion J, Santa-Maria A, Lajoie-Mazenc I, Wright M, et al. g-tubulin is present in acentriolar MTOCs during mouse early development. J Cell Sci. 1993;105:157–66.PubMedGoogle Scholar
  11. 11.
    Carabatsos MJ, Combelles CM, Messinger SM, Albertini DF. Sorting and reorganization of centrosomes during oocyte maturation in the mouse. Microsc Res Tech. 2000;49:435–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Ma W, Baumann C, Viveiros MM. NEDD1 is crucial for meiotic spindle stability and accurate chromosome segregation in mammalian oocytes. Dev Biol. 2011;339:439–50.CrossRefGoogle Scholar
  13. 13.
    Can A, Semiz O, Cinar O. Centrosome and microtubule dynamics during early stages of meiosis in mouse oocytes. Mol Hum Reprod. 2003;9:749–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Kalab P, Heald R. The RanGTP gradient – a GPS for the mitotic spindle. J Cell Sci. 2008;121:1577–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Kalab P, Pralle A, Isacoff EY, Heald R, Weis K. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature. 2006;440:697–701.PubMedCrossRefGoogle Scholar
  16. 16.
    Dumont J, Petri S, Pellegrin F, Terret M-E, Bohnsack MT, Rassinier P, et al. A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J Cell Biol. 2007;176:295–305.PubMedCrossRefGoogle Scholar
  17. 17.
    Karsenti E, Newport J, Kirschner M. Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J Cell Biol. 1984;99:47–54.CrossRefGoogle Scholar
  18. 18.
    Dogterom M, Felix MA, Guet CC, Leibler S. Influence of M-phase chromatin on the anisotropy of microtubule asters. J Cell Biol. 1996;133:125–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Caudron M, Bunt G, Bastiaens P, Karsenti E. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science. 2005;309:1373–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Schuh M, Ellenberg J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell. 2007;130:484–98.PubMedCrossRefGoogle Scholar
  21. 21.
    Breuer M, Kolano A, Kwon M, Li CC, Tsai TF, Pellman D, et al. HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells. J Cell Biol. 2010;191:1251–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Brunet S, Polanski Z, Verlhac M-H, Kubiak JZ, Maro B. Bipolar meiotic spindle formation without chromatin. Curr Biol. 1998;8:1231–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Yang JW, Lei ZL, Miao YL, Huang JC, Shi LH, OuYang YC, et al. Spindle assembly in the absence of chromosomes in mouse oocytes. Reproduction. 2007;134:731–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Wittmann T, Wilm M, Karsenti E, Vernos I. TPX2, a novel Xenopus MAP involved in spindle pole organization. J Cell Biol. 2000;149:1405–18.PubMedCrossRefGoogle Scholar
  25. 25.
    Gruss OJ, Wittmann M, Yokoyama H, Pepperkok R, Kufer T, Silljé H, et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in Hela cells. Nat Cell Biol. 2002;4:871–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Brunet S, Dumont J, Lee KW, Kinoshita K, Hikal P, Gruss OJ, et al. Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PLoS One. 2008;3:e3338.PubMedCrossRefGoogle Scholar
  27. 27.
    Brittle AL, Ohkura H. Centrosome maturation: aurora lights the way to the poles. Curr Biol. 2005;15:R880–2.PubMedCrossRefGoogle Scholar
  28. 28.
    Barr AR, Gergely F. Aurora-A: the maker and breaker of spindle poles. J Cell Sci. 2007;120:2987–96.PubMedCrossRefGoogle Scholar
  29. 29.
    Saskova A, Solc P, Baran V, Kubelka M, Schultz RM, Motlik J. Aurora kinase A controls meiosis I progression in mouse oocytes. Cell Cycle. 2008;7:2368–76.PubMedGoogle Scholar
  30. 30.
    Ding J, Swain JE, Smith GD. Aurora kinase-A regulates microtubule organizing center (MTOC) localization, chromosome dynamics, and histone-H3 phosphorylation in mouse oocytes. Mol Reprod Dev. 2011;78:80–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Mountain V, Simerly C, Howard L, Ando A, Schatten G, Compton DA. The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol. 1999;147:351–65.PubMedCrossRefGoogle Scholar
  32. 32.
    Fitzharris G. A shift from kinesin 5-dependent metaphase spindle function during preimplantation development in mouse. Development. 2009;136:2111–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 2008;22:2189–203.PubMedCrossRefGoogle Scholar
  34. 34.
    Koffa MD, Casanova CM, Santarella R, Kocher T, Wilm M, Mattaj IW. HURP is part of a Ran-dependent complex involved in spindle formation. Curr Biol. 2006;16:743–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Mitchison T, Evans L, Schulze E, Kirshner M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell. 1986;45:515–27.PubMedCrossRefGoogle Scholar
  36. 36.
    Kops GJ, Saurin AT, Meraldi P. Finding the middle ground: how kinetochores power chromosome congression. Cell Mol Life Sci. 2010;67:2145–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Hached K, Xie SZ, Buffin E, Cladiere D, Rachez C, Sacras M, et al. Mps1 at kinetochores is essential for female mouse meiosis I. Development. 2011;138:2261–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Cai S, O’Connell CB, Khodjakov A, Walczak CE. Chromosome congression in the absence of kinetochore fibres. Nat Cell Biol. 2009;11:832–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Wignall SM, Villeneuve AM. Lateral microtubule bundles promote chromosome alignment during acentrosomal oocyte meiosis. Nat Cell Biol. 2009;11:839–44.PubMedCrossRefGoogle Scholar
  40. 40.
    Antonio C, Ferby I, Wilhelm H, Jones M, Karsenti E, Nebreda AR, et al. Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell. 2000;102:425–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Funabiki H, Murray AW. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell. 2000;102:411–24.PubMedCrossRefGoogle Scholar
  42. 42.
    Ohsugi M, Adachi K, Horai R, Kakuta S, Sudo K, Kotaki H, et al. Kid-mediated chromosome compaction ensures proper nuclear envelope formation. Cell. 2008;132:771–82.PubMedCrossRefGoogle Scholar
  43. 43.
    Illingworth C, Pirmadjid N, Serhal P, Howe K, Fitzharris G. MCAK regulates chromosome alignment but is not necessary for preventing aneuploidy in mouse oocyte meiosis I. Development. 2011;137:2133–8.CrossRefGoogle Scholar
  44. 44.
    Kline-Smith SL, Khodjakov A, Hergert P, Walczak CE. Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol Biol Cell. 2004;15:1146–59.PubMedCrossRefGoogle Scholar
  45. 45.
    Gassmann R, Essex A, Hu JS, Maddox PS, Motegi F, Sugimoto A, et al. A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev. 2008;22:2385–99.PubMedCrossRefGoogle Scholar
  46. 46.
    Ganem NJ, Godinho SA, Pellman D. A mechanism linking extra centrosomes to chromosomal instability. Nature. 2009;460:278–82.PubMedCrossRefGoogle Scholar
  47. 47.
    Verlhac MH, de Pennart H, Maro B, Cobb MH, Clarke HJ. MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes. Dev Biol. 1993;158:330–40.PubMedCrossRefGoogle Scholar
  48. 48.
    Verlhac MH, Kubiak JZ, Weber M, Geraud G, Colledge WH, Evans MJ, et al. Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development. 1996;122:815–22.PubMedGoogle Scholar
  49. 49.
    Verlhac MH, Lefebvre C, Kubiak JZ, Umbhauer M, Rassinier P, Colledge W, et al. Mos activates MAP kinase in mouse oocytes through two opposite pathways. EMBO J. 2000;19:6065–74.PubMedCrossRefGoogle Scholar
  50. 50.
    Sun SC, Xiong B, Lu SS, Sun QY. MEK1/2 is a critical regulator of microtubule assembly and spindle organization during rat oocyte meiotic maturation. Mol Reprod Dev. 2008;75:1542–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Gorbsky GJ, Simerly C, Schatten G, Borisy GG. Microtubules in the metaphase-arrested mouse oocyte turn over rapidly. Proc Natl Acad Sci USA. 1990;87:6049–53.PubMedCrossRefGoogle Scholar
  52. 52.
    Lefebvre C, Terret M-E, Djiane A, Rassinier P, Maro B, Verlhac M-H. Meiotic spindle stability depends on MAPK-interacting and spindle-stabilizing protein (MISS), a new MAPK substrate. J Cell Biol. 2002;157:603–13.PubMedCrossRefGoogle Scholar
  53. 53.
    Terret M-E, Lefebvre C, Djiane A, Rassinier P, Moreau J, Maro B, et al. DOC1R: a MAP kinase substrate that control microtubule organization of metaphase II mouse oocytes. Development. 2003;130:5169–77.PubMedCrossRefGoogle Scholar
  54. 54.
    Maro B, Verlhac M-H. Polar body formation: new rules for asymmetric divisions. Nat Cell Biol. 2002;4:281–3.CrossRefGoogle Scholar
  55. 55.
    Verlhac M-H, Lefebvre C, Guillaud P, Rassinier P, Maro B. Asymmetric division in mouse oocytes: with or without Mos. Curr Biol. 2000;10:1303–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Schuh M, Ellenberg J. A new model for asymmetric spindle positioning in mouse oocytes. Curr Biol. 2008;18:1986–92.PubMedCrossRefGoogle Scholar
  57. 57.
    Dumont J, Million K, Sunderland K, Rassinier P, Lim H, Leader B, et al. Formin-2 is required for spindle migration and for late steps of cytokinesis in mouse oocytes. Dev Biol. 2007;301:254–65.PubMedCrossRefGoogle Scholar
  58. 58.
    Longo FJ, Chen D-Y. Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev Biol. 1985;107:382–94.PubMedCrossRefGoogle Scholar
  59. 59.
    Burkel BM, von Dassow G, Bement WM. Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil Cytoskeleton. 2007;64:822–32.PubMedCrossRefGoogle Scholar
  60. 60.
    Azoury J, Lee KW, Georget V, Hikal P, Verlhac MH. Symmetry breaking in mouse oocytes requires transient F-actin meshwork destabilization. Development. 2011;138:2903–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Azoury J, Lee KW, Georget V, Rassinier P, Leader B, Verlhac M-H. Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr Biol. 2008;18:1514–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Li H, Guo F, Rubinstein B, Li R. Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes. Nat Cell Biol. 2008;10:1301–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM. A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature. 2004;431:325–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Halet G, Carroll J. Rac activity is polarized and regulates meiotic spindle stability and anchoring in mammalian oocytes. Dev Cell. 2007;12:309–17.PubMedCrossRefGoogle Scholar
  65. 65.
    Woolner S, O’Brien LL, Wiese C, Bement WM. Myosin-10 and actin filaments are essential for mitotic spindle function. J Cell Biol. 2008;182:77–88.PubMedCrossRefGoogle Scholar
  66. 66.
    Fink J, Carpi N, Betz T, Betard A, Chebah M, Azioune A, et al. External forces control mitotic spindle ­positioning. Nat Cell Biol. 2011;13:771–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Mitsushima M, Aoki K, Ebisuya M, Matsumura S, Yamamoto T, Matsuda M, et al. Revolving movement of a dynamic cluster of actin filaments during mitosis. J Cell Biol. 2011;191:453–62.CrossRefGoogle Scholar
  68. 68.
    Palmer RE, Sullivan DS, Huffaker T, Koshland D. Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae. J Cell Biol. 1992;119:583–93.PubMedCrossRefGoogle Scholar
  69. 69.
    Pruyne DW, Schott DH, Bretscher A. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol. 1998;143:1931–45.PubMedCrossRefGoogle Scholar
  70. 70.
    Bezanilla M, Wadsworth P. Spindle positioning: actin mediates pushing and pulling. Curr Biol. 2009;19:R168–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Sandquist JC, Kita AM, Bement WM. And the dead shall rise: actin and myosin return to the spindle. Dev Cell. 2011;21:410–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Xu Y, Moseley JB, Sagot I, Poy F, Pellman D, Goode BL, et al. Crystal structures of a Formin Homology-2 domain reveal a tethered dimer architecture. Cell. 2004;116:711–23.PubMedCrossRefGoogle Scholar
  73. 73.
    Renault L, Bugyi B, Carlier MF. Spire and Cordon-bleu: multifunctional regulators of actin dynamics. Trends Cell Biol. 2008;18:494–504.PubMedCrossRefGoogle Scholar
  74. 74.
    Alberts AS. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J Biol Chem. 2001;276:2824–30.PubMedCrossRefGoogle Scholar
  75. 75.
    Leader B, Leder P. Formin-2, a novel formin homology protein of the cappuccino subfamily, is highly expressed in the developing and adult central nervous system. Mech Dev. 2000;93:221–31.PubMedCrossRefGoogle Scholar
  76. 76.
    Leader B, Lim H, Carabatsos MJ, Harrington A, Ecsedy J, Pellman D, et al. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat Cell Biol. 2002;4:921–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Campellone KG, Welch MD. A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol. 2010;11:237–51.PubMedCrossRefGoogle Scholar
  78. 78.
    Quinlan ME, Heuser JE, Kerkhoff E, Mullins RD. Drosophila Spire is an actin nucleation factor. Nature. 2005;433:382–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Bosch M, Le KH, Bugyi B, Correia JJ, Renault L, Carlier MF. Analysis of the function of Spire in actin assembly and its synergy with formin and profilin. Mol Cell. 2007;28:555–68.PubMedCrossRefGoogle Scholar
  80. 80.
    Manseau LJ, Schüpbach T. Cappuccino and spire: two unique maternal-effect loci required for both the anteroposterior and dorsoventral patterns of the Drosophila embryo. Genes Dev. 1989;3:1437–52.PubMedCrossRefGoogle Scholar
  81. 81.
    Dahlgaard K, Raposo AA, Niccoli T, St Johnston D. Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the drosophila oocyte. Dev Cell. 2007;13:539–53.PubMedCrossRefGoogle Scholar
  82. 82.
    Rosales-Nieves AE, Johndrow JE, Keller LC, Magie CR, Pinto-Santini DM, Parkhurst SM. Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino. Nat Cell Biol. 2006;8:367–76.PubMedCrossRefGoogle Scholar
  83. 83.
    Pfender S, Kuznetsov V, Pleiser S, Kerkhoff E, Schuh M. Spire-type actin nucleators cooperate with formin-2 to drive asymmetric oocyte division. Curr Biol. 2011;21:955–60.PubMedCrossRefGoogle Scholar
  84. 84.
    Ciccarelli FD, Bork P, Kerkhoff E. The KIND module: a putative signalling domain evolved from the C lobe of the protein kinase fold. Trends Biochem Sci. 2003;28:349–52.PubMedCrossRefGoogle Scholar
  85. 85.
    Pechlivanis M, Samol A, Kerkhoff E. Identification of a short Spir interaction sequence at the C-terminal end of formin subgroup proteins. J Biol Chem. 2009;284:25324–33.PubMedCrossRefGoogle Scholar
  86. 86.
    Vizcarra CL, Kreutz B, Rodal AA, Toms AV, Lu J, Zheng W, et al. Structure and function of the interacting domains of Spire and Fmn-family formins. Proc Natl Acad Sci USA. 2011;108:11884–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Sun SC, Wang ZB, Xu YN, Lee SE, Cui XS, Kim NH. Arp2/3 Complex regulates asymmetric division and cytokinesis in mouse oocytes. PLoS One. 2011;6:e18392.PubMedCrossRefGoogle Scholar
  88. 88.
    Yi K, Unruh JR, Deng M, Slaughter BD, Rubinstein B, Li R. Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat Cell Biol. 2011;13:1252–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Verlhac M-H. Spindle positioning: going against the actin flow. Nat Cell Biol. 2011;13:1183–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Webb M, Howlett SK, Maro B. Parthenogenesis and cytoskeleton organisation in ageing mouse oocytes. J Embryol Exp Morphol. 1986;95:131–45.PubMedGoogle Scholar
  91. 91.
    Prodon F, Sardet C, Nishida H. Cortical and cytoplasmic flows driven by actin microfilaments polarize the cortical ER-mRNA domain along the a-v axis in ascidian oocytes. Dev Biol. 2008;313:682–99.PubMedCrossRefGoogle Scholar
  92. 92.
    Nadarajan S, Govindan JA, McGovern M, Hubbard EJ, Greenstein D. MSP and GLP-1/notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. Elegans. Development. 2009;136:2223–34.PubMedCrossRefGoogle Scholar
  93. 93.
    Shimamoto Y, Maeda YT, Ishiwata S, Libchaber AJ, Kapoor TM. Insights into the micromechanical properties of the metaphase spindle. Cell. 2011;145:1062–74.PubMedCrossRefGoogle Scholar
  94. 94.
    Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2:280–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Center for Interdisciplinary Research in Biology (CIRB)Collège de France, UMR-CNRS7241/INSERM-U1050ParisFrance
  2. 2.Memolife Laboratory of Excellence and Paris Science LettreParisFrance
  3. 3.The Wellcome Trust Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburgh ScotlandUK

Personalised recommendations