Skip to main content

Imaging Strategies for Studying Mammalian Oogenesis

  • Chapter
  • First Online:
Oogenesis

Abstract

Advances in biomedical imaging are now impacting the evaluation of gonads and gametes in experimental animal model systems and human clinical specimens. This chapter summarizes the rationale for both live cell and fixed sample imaging using light microscopy. Useful protocols, detailed methods, and tools for data extraction are covered for a variety of applications pertaining to the analysis of oocytes, embryos, and intact ovarian tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodrigues P, Limback D, McGinnis LK, Plancha CE, Albertini DF. Oogenesis: prospects and challenges for the future. J Cell Physiol. 2008;216:355–65.

    Article  PubMed  CAS  Google Scholar 

  2. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21:200–14.

    Article  PubMed  CAS  Google Scholar 

  3. Nilsson E, Skinner MK. Cellular interactions that control primordial follicle development and folliculogenesis. J Soc Gynecol Investig. 2001;8:S17–20.

    Article  PubMed  CAS  Google Scholar 

  4. Park CE, Cha KY, Kim K, Lee KA. Expression of cell cycle regulatory genes during primordial-primary follicle transition in the mouse ovary. Fertil Steril. 2005;83:410–8.

    Article  PubMed  CAS  Google Scholar 

  5. Yoon SJ, Kim KH, Chung HM, Choi DH, Lee WS, Cha KY, Lee KA. Gene expression profiling of early follicular development in primordial, primary, and secondary follicles. Fertil Steril. 2006;85:193–203.

    Article  PubMed  CAS  Google Scholar 

  6. Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122:829–38.

    Article  PubMed  CAS  Google Scholar 

  7. Peters H, Byskov AG, Himelstein-Braw R, Faber M. Follicular growth: the basic event in the mouse and human ovary. J Reprod Fertil. 1975;45:559–66.

    Article  PubMed  CAS  Google Scholar 

  8. Driancourt MA, Reynaud K, Cortvrindt R, Smitz J. Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod. 2000;5:143–52.

    Article  PubMed  CAS  Google Scholar 

  9. Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJ, Hovatta O. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab. 2002;87:316–21.

    Article  PubMed  CAS  Google Scholar 

  10. Hayashi M, McGee EA, Min G, Klein C, Rose UM, van Duin M, Hsueh AJ. Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology. 1999;140:1236–44.

    Article  PubMed  CAS  Google Scholar 

  11. Sun QY, Liu K, Kikuchi K. Oocyte-specific knockout: a novel in vivo approach for studying gene functions during folliculogenesis, oocyte maturation, fertilization, and embryogenesis. Biol Reprod. 2008;79:1014–20.

    Article  PubMed  CAS  Google Scholar 

  12. Oktem O, Urman B. Understanding follicle growth in vivo. Hum Reprod. 2010;25:2944–54.

    Article  PubMed  Google Scholar 

  13. Krysko DV, Diez-Fraile A, Criel G, Svistunov AA, Vandenabeele P, D’Herde K. Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis. 2008;13:1065–87.

    Article  PubMed  Google Scholar 

  14. Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R, Artini PG, Piomboni P, Focarelli R. Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update. 2008;14:131–42.

    Article  PubMed  CAS  Google Scholar 

  15. Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121:647–53.

    Article  PubMed  CAS  Google Scholar 

  16. Albertini DF. The structural basis of oocyte-granulosa cell communication. Ernst Schering Res Found Workshop. 2002;101–10.

    Google Scholar 

  17. Albertini DF, Barrett SL. Oocyte-somatic cell communication. Reprod Suppl. 2003;61:49–54.

    PubMed  CAS  Google Scholar 

  18. Combelles CM, Carabatsos MJ, Kumar TR, Matzuk MM, Albertini DF. Hormonal control of somatic cell oocyte interactions during ovarian follicle development. Mol Reprod Dev. 2004;69:347–55.

    Article  PubMed  CAS  Google Scholar 

  19. Li Q, McKenzie LJ, Matzuk MM. Revisiting oocyte-somatic cell interactions: in search of novel intrafollicular predictors and regulators of oocyte developmental competence. Mol Hum Reprod. 2008;14:673–8.

    Article  PubMed  CAS  Google Scholar 

  20. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14:159–77.

    Article  PubMed  CAS  Google Scholar 

  21. Norris RP, Freudzon M, Mehlmann LM, Cowan AE, Simon AM, Paul DL, Lampe PD, Jaffe LA. Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Development. 2008;135:3229–38.

    Article  PubMed  CAS  Google Scholar 

  22. Norris RP, Ratzan WJ, Freudzon M, Mehlmann LM, Krall J, Movsesian MA, Wang H, Ke H, Nikolaev VO, Jaffe LA. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development. 2009;136:1869–78.

    Article  PubMed  CAS  Google Scholar 

  23. Norris RP, Freudzon M, Nikolaev VO, Jaffe LA. Epidermal growth factor receptor kinase activity is required for gap junction closure and for part of the decrease in ovarian follicle cGMP in response to LH. Reproduction. 2010;140:655–62.

    Article  PubMed  CAS  Google Scholar 

  24. Su YQ, Sugiura K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, Matzuk MM, Eppig JJ. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development. 2008;135:111–21.

    Article  PubMed  CAS  Google Scholar 

  25. Su YQ, Sugiura K, Eppig JJ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med. 2009;27:32–42.

    Article  PubMed  CAS  Google Scholar 

  26. Webb R, Garnsworthy PC, Gong JG, Armstrong DG. Control of follicular growth: local interactions and nutritional influences. J Anim Sci. 2004;82 E-Suppl:E63–74.

    PubMed  CAS  Google Scholar 

  27. Fair T. Follicular oocyte growth and acquisition of developmental competence. Anim Reprod Sci. 2003;78:203–16.

    Article  PubMed  CAS  Google Scholar 

  28. Kidder GM, Vanderhyden BC. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol. 2010;88:399–413.

    Article  PubMed  CAS  Google Scholar 

  29. Yeo CX, Gilchrist RB, Lane M. Disruption of bidirectional oocyte-cumulus paracrine signaling during in vitro maturation reduces subsequent mouse oocyte developmental competence. Biol Reprod. 2009;80:1072–80.

    Article  PubMed  CAS  Google Scholar 

  30. McGinnis LK, Albertini DF. Dynamics of protein phosphorylation during meiotic maturation. J Assist Reprod Genet. 2010;27:169–82.

    Article  PubMed  Google Scholar 

  31. Luciano AM, Franciosi F, Modina SC, Lodde V. Gap junction-mediated communications regulate chromatin remodeling during bovine oocyte growth and differentiation through cAMP-dependent mechanism(s). Biol Reprod. 2011;85:1252–9.

    Article  PubMed  CAS  Google Scholar 

  32. Mattson BA, Albertini DF. Oogenesis: chromatin and microtubule dynamics during meiotic prophase. Mol Reprod Dev. 1990;25:374–83.

    Article  PubMed  CAS  Google Scholar 

  33. Mehlmann LM. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction. 2005;130:791–9.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010;330:366–9.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang M, Su YQ, Sugiura K, Wigglesworth K, Xia G, Eppig JJ. Estradiol promotes and maintains cumulus cell expression of natriuretic peptide receptor 2 (NPR2) and meiotic arrest in mouse oocytes in vitro. Endocrinology. 2011;152:4377–85.

    Article  PubMed  CAS  Google Scholar 

  36. Wang HX, Tekpetey FR, Kidder GM. Identification of WNT/beta-CATENIN signaling pathway components in human cumulus cells. Mol Hum Reprod. 2009;15:11–7.

    Article  PubMed  Google Scholar 

  37. Marteil G, Richard-Parpaillon L, Kubiak JZ. Role of oocyte quality in meiotic maturation and embryonic development. Reprod Biol. 2009;9:203–24.

    Article  PubMed  Google Scholar 

  38. Senbon S, Hirao Y, Miyano T. Interactions between the oocyte and surrounding somatic cells in follicular development: lessons from in vitro culture. J Reprod Dev. 2003;49:259–69.

    Article  PubMed  CAS  Google Scholar 

  39. Picton HM, Harris SE, Muruvi W, Chambers EL. The in vitro growth and maturation of follicles. Reproduction. 2008;136:703–15.

    Article  PubMed  CAS  Google Scholar 

  40. Combelles CM, Albertini DF, Racowsky C. Distinct microtubule and chromatin characteristics of human oocytes after failed in-vivo and in-vitro meiotic maturation. Hum Reprod. 2003;18:2124–30.

    Article  PubMed  Google Scholar 

  41. Barrett SL, Albertini DF. Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. J Assist Reprod Genet. 2010;27:29–39.

    Article  PubMed  Google Scholar 

  42. Segers I, Adriaenssens T, Ozturk E, Smitz J. Acquisition and loss of oocyte meiotic and developmental competence during in vitro antral follicle growth in mouse. Fertil Steril. 2010;93:2695–700.

    Article  PubMed  Google Scholar 

  43. Ebner T, Moser M, Sommergruber M, Shebl O, Tews G. Incomplete denudation of oocytes prior to ICSI enhances embryo quality and blastocyst development. Hum Reprod. 2006;21:2972–7.

    Article  PubMed  CAS  Google Scholar 

  44. Wang HX, Tong D, El Gehani F, Tekpetey FR, Kidder GM. Connexin expression and gap junctional coupling in human cumulus cells: contribution to embryo quality. J Cell Mol Med. 2009;13:972–84.

    Article  PubMed  CAS  Google Scholar 

  45. Eppig JJ, O’Brien MJ, Wigglesworth K, Nicholson A, Zhang W, King BA. Effect of in vitro maturation of mouse oocytes on the health and lifespan of adult offspring. Hum Reprod. 2009;24:922–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the many colleagues and friends who have worked in the lab to advance the perspectives of oocyte biology that we enjoy today. Special thanks go to Lynda McGinnis and Britta Mattson who at different ends of the spectrum contributed to the development of MTSB-XF. Finally, this chapter would not have been possible without the funding from the NIH, ESHE Fund, The March of Dimes, and the Hall Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Albertini Ph.D., M.S., AM, B.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Limback, S.D., Albertini, D.F. (2013). Imaging Strategies for Studying Mammalian Oogenesis. In: Coticchio, G., Albertini, D., De Santis, L. (eds) Oogenesis. Springer, London. https://doi.org/10.1007/978-0-85729-826-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-826-3_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-825-6

  • Online ISBN: 978-0-85729-826-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics