• Rush D. RobinettIII
  • David G. Wilson
Part of the Understanding Complex Systems book series (UCS)


In this chapter, the concepts of energy, work, and power will be reviewed to set the stage to relate thermodynamics to Hamiltonian mechanics.


Phase Plane Power Flow Nonlinear Stiffness Duffing Oscillator Hamiltonian Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 6.
    Meirovitch, L.: Methods of Analytical Dynamics. McGraw-Hill, New York (1970) Google Scholar
  2. 7.
    Robinett III, R.D., Wilson, D.G.: Collective systems: physical and information exergies. Sandia National Laboratories, SAND2007 Report (March 2007) Google Scholar
  3. 13.
    Robinett III, R.D., Wilson, D.G.: Exergy and irreversible entropy production thermodynamic concepts for nonlinear control design. Int. J. Exergy 6(3), 357–387 (2009) Google Scholar
  4. 15.
    Junkins, J.L., Kim, Y.: Introduction to Dynamics and Control of Flexible Structures. AIAA, Washington (1993) MATHGoogle Scholar
  5. 23.
    Sabatini, M.: Limit cycle’s uniqueness for a class of plane systems. Technical Report UTM 662, Mathematica, University of Trento, Italy (February 2004) Google Scholar
  6. 25.
    Boyce, W.E., DiPrima, R.C.: Elementary Differential Equations and Boundary Value Problems, 8th edn. Wiley, New York (2005) Google Scholar
  7. 26.
    Weinstock, R.: Calculus of Variations with Applications to Physics and Engineering. Dover, New York (1974) MATHGoogle Scholar
  8. 27.
    Dowell, E.H., Crawley, E.F., Curtiss, H.C. Jr., Peters, D.A., Scanlan, R.H., Sisto, F.: A Modern Course in Aeroelasticity. Sijthoff & Noordhoff, Rockville (1978) MATHGoogle Scholar
  9. 28.
    Flanigan, F.J.: Complex Variables—Harmonic and Analytic Functions. Dover, New York (1983) Google Scholar
  10. 29.
    Boas, M.L.: Mathematical Methods in the Physical Sciences. Wiley, New York (1966) MATHGoogle Scholar
  11. 30.
    Robinett III, R.D., Wilson, D.G.: Exergy and entropy thermodynamic concepts for control system design: slewing single axis. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO, August 2006 Google Scholar
  12. 32.
    Ogata, K.: Modern Control Engineering. Prentice-Hall, Englewood Cliffs (1970) Google Scholar
  13. 46.
    Robinett III, R.D., Wilson, D.G.: What is a limit cycle? Int. J. Control 81(12), 1886–1900 (2008) MathSciNetMATHCrossRefGoogle Scholar
  14. 47.
    Robinett III, R.D., Parker, G.G., Schaub, H., Junkins, J.L.: Lyapunov optimal saturated control for nonlinear systems. J. Guid. Control Dyn. 20(6), 1083–1088 (1997) MATHCrossRefGoogle Scholar
  15. 48.
    Anthony, K.-H.: Hamilton’s action principle and thermodynamics of irreversible processes—a unifying procedure for reversible and irreversible processes. J. Non-Newton. Fluid Mech. 96, 291–339 (2001) MathSciNetMATHCrossRefGoogle Scholar
  16. 49.
    Smith, R.J.: Circuits, Devices, and Systems: A First Course in Electrical Engineering, 3rd edn. Wiley, New York (1976) Google Scholar
  17. 50.
    Robinett III, R.D., Wilson, D.G.: Collective plume tracing: a minimal information approach to collective control. Int. J. Robust Nonlinear Control (2009). doi: 10.1002/rnc.1420 MATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations