Skip to main content

Sustainability of Self-organizing Systems

  • Chapter
Book cover Nonlinear Power Flow Control Design

Part of the book series: Understanding Complex Systems ((UCS))

  • 2145 Accesses

Abstract

In Chap. 14, sustainability of self-organizing systems is developed with respect to exergy sustainability. These developments provide a missing link in the analysis and design of self-organizing systems. In addition, exergy is shown to be a fundamental driver and necessary input for sustainable systems since exergy input is a single point of failure for self-organizing, adaptable systems. Finally, the concepts of exergy sustainability and energy surety are combined to determine what is meant by optimality and scalability for self-organizing energy and power grids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrödinger, E.: What Is Life? Cambridge University Press, Cambridge (1992). Reprint edn.

    Google Scholar 

  2. Kondepudi, D., Prigogine, I.: Modern Thermodynamics: From Heat Engines to Dissipative Structures. Wiley, New York (1999)

    Google Scholar 

  3. Nicolis, G., Prigogine, I.: Self-organization in Non-equilibrium Systems. Wiley, New York (1977)

    Google Scholar 

  4. Prigogine, I., Stengers, I.: Order out of Chaos. Bantam Books, New York (1984)

    Google Scholar 

  5. Heylighen, F.: The science of self-organization and adaptivity. Principia Cybernetic Web. http://perspmcl.vub.ac.be/

  6. Robinett III, R.D., Wilson, D.G., Reed, A.W.: Exergy sustainability for complex systems. InterJournal Complex Systems, 1616, New England Complex Systems Institute (2006)

    Google Scholar 

  7. Robinett III, R.D., Wilson, D.G.: Exergy and irreversible entropy production thermodynamic concepts for nonlinear control design. Int. J. Exergy 6(3), 357–387 (2009)

    Google Scholar 

  8. Robinett III, R.D., Hurtado, J.E.: Stability and control of collective systems. J. Intell. Robot. Syst. 39, 43–55 (2004)

    Article  Google Scholar 

  9. Gyftopoulos, E.P., Beretta, G.P.: Thermodynamics, Foundations and Applications. MacMillan & Co., New York (1991)

    Google Scholar 

  10. Scott, D.S.: Exergy. Int. J. Hydrog. Energy 28, 369–375 (2003)

    Article  Google Scholar 

  11. Robinett III, R.D., Wilson, D.G.: What is a limit cycle? Int. J. Control 81(12), 1886–1900 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Robinett III, R.D., Wilson, D.G.: Exergy and irreversible entropy production thermodynamic concepts for control design: nonlinear systems. In: 14th Mediterranean Conference on Control and Automation, Ancona, Italy, June 28–30, 2006

    Google Scholar 

  13. Cooper, J.A., Robinett III, R.D.: Deriving sustainable ordered surety by overcoming persistent disorder pressures. Journal of Systems Safety 42(4), 27–34 (2006)

    Google Scholar 

  14. Principia Cybernetica Web, http://pespmc1.vub.ac.be. Principia Cybernetica tries to tackle age-old philosophical questions with the help of the most recent cybernetic theories and technologies

  15. Alonso, A.A., Fernandez, C.V., Banga, J.R.: Dissipative systems: from physics to robust nonlinear control. Int. J. Robust Nonlinear Control 14, 157–179 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hill, D., Moylan, P.J.: The stability of nonlinear dissipative systems. IEEE Transactions on Automatic Control 21(5), 708–711 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. Alonso, A.A., Ydstie, B.E.: Stabilization of distributed systems using irreversible thermodynamics. Automatica 37, 1739–1755 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haken, H.: Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices. Springer, New York (1983)

    MATH  Google Scholar 

  19. Haken, H.: Synergetics: An Introduction, 3rd edn. Springer, New York (1983)

    MATH  Google Scholar 

  20. Buenstorf, G.: Self-organization and sustainability: energetics of evolution and implications for ecological economics. Ecol. Econ. 33, 119–134 (2000)

    Article  Google Scholar 

  21. Allen, P.M.: Cities and Regions a Self-Organizing Systems, Models of Complexity. Gordon and Breach, Amsterdam (1997)

    Google Scholar 

  22. Bak, P.: How Nature Works: The Science of Self-Organized Criticality. Springer, Berlin (1996)

    MATH  Google Scholar 

  23. Kaptchuk, T.J.: The Web That Has No Weaver: Understanding Chinese Medicine. Congdon and Weed, New York (1983)

    Google Scholar 

  24. Lovelock, J., Margulis, L.: The GAIA hypothesis. www.mountainman.com.au/gaia.html

  25. Tatro, M.L., Covan, J.M., Kuswa, G.W., Jones, S.A., Robinett III, R.D., Menicucci, D.: Toward an energy surety future. Sandia Report, SAND2005-6281 (October 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Wilson .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Robinett, R.D., Wilson, D.G. (2011). Sustainability of Self-organizing Systems. In: Nonlinear Power Flow Control Design. Understanding Complex Systems. Springer, London. https://doi.org/10.1007/978-0-85729-823-2_14

Download citation

Publish with us

Policies and ethics