Case Study #7: Satellite Reorientation Control

  • Rush D. RobinettIII
  • David G. Wilson
Part of the Understanding Complex Systems book series (UCS)


Chapter 12 presents HSSPFC applied to a slewing spacecraft problem. The specific slewing spacecraft problem is a Multi-Input-Multi-Output (MIMO) three-axis spacecraft that employs Proportional-Integral-Derivative (PID) tracking control with numerical simulation results. This problem provides an interesting complication due to the three-axis rigid body rotation sequence.


Tracking Control Attitude Control System Model Reference Adaptive Control Rigid Body Mode Control Lyapunov Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 13.
    Robinett III, R.D., Wilson, D.G.: Exergy and irreversible entropy production thermodynamic concepts for nonlinear control design. Int. J. Exergy 6(3), 357–387 (2009) Google Scholar
  2. 30.
    Robinett III, R.D., Wilson, D.G.: Exergy and entropy thermodynamic concepts for control system design: slewing single axis. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO, August 2006 Google Scholar
  3. 67.
    Robinett III, R.D., Wilson, D.G.: Nonlinear slewing spacecraft control based on exergy, power flow, and static and dynamic stability. Journal of the Astronautical Sciences 57(4) (2009) Google Scholar
  4. 95.
    Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991) MATHGoogle Scholar
  5. 120.
    Hughes, P.C.: Spacecraft Attitude Dynamics. Dover, New York (2004) Google Scholar
  6. 121.
    Srivener, S.L., Thompson, R.C.: Survey of time-optimal attitude maneuvers. J. Guid. Control Dyn. 17(2), 225–233 (1994) CrossRefGoogle Scholar
  7. 122.
    Tsiotras, P.: Stabilization and optimality results for attitude control problem. J. Guid. Control Dyn. 9(4), 772–779 (1996) CrossRefGoogle Scholar
  8. 123.
    Subbarao, K.: Nonlinear PID-like controllers for rigid-body attitude stabilization. J. Astronaut. Sci. 52(1 and 2), 61–74 (2004) MathSciNetGoogle Scholar
  9. 124.
    Tsiotras, P.: Further passivity results for the attitude control problems. IEEE Trans. Autom. Control 43(11), 1597–1600 (1998) MathSciNetMATHCrossRefGoogle Scholar
  10. 125.
    Cavallo, A., DeMaria, G.: Attitude control of large angle maneuvers. In: Proceedings of the IEEE Workshop Variable Structure Control, pp. 232–236 (1996) CrossRefGoogle Scholar
  11. 126.
    Vadali, S.R.: Variable-structure control of spacecraft large-angle maneuvers. AIAA Journal of Guidance, Control, and Dynamics 235–239 (1986) Google Scholar
  12. 127.
    Robinett III, R.D., Parker, G.G.: Spacecraft Euler parameter tracking of large angle maneuvers via sliding mode control. J. Guid. Control Dyn. 19, 702–703 (1996) MATHCrossRefGoogle Scholar
  13. 128.
    Robinett III, R.D., Parker, G.G.: Least squares sliding mode control tracking of spacecraft large angle maneuvers. J. Astronaut. Sci. 45(4), 433–450 (1997) Google Scholar
  14. 129.
    Singh, S.N.: Nonlinear attitude control of spacecraft. IEEE Trans. Aerosp. Electron. Syst. 23, 371–379 (1987) CrossRefGoogle Scholar
  15. 130.
    Tandale, M.D., Valasek, J.: Adaptive dynamic inversion control with actuator saturation constraints applied to tracking spacecraft maneuvers. J. Astronaut. Sci. 52(4), 517–530 (2004) MathSciNetGoogle Scholar
  16. 131.
    Tewari, A.: Optimal nonlinear spacecraft attitude control through Hamiltonian–Jacobi formulation. J. Astronaut. Sci. 50(1), 99–112 (2002) MathSciNetGoogle Scholar
  17. 132.
    Joshi, S.M., Kelkar, A.G., Wen, J.T.Y.: Robust attitude stabilization of spacecraft using nonlinear quaternion feedback. IEEE Trans. Autom. Control 40, 1800–1803 (1995) MathSciNetMATHCrossRefGoogle Scholar
  18. 133.
    Wie, B., Barba, P.M.: Quaternion feedback for spacecraft large angle maneuvers. J. Guid. Control Dyn. 3(3), 360–365 (1985) CrossRefGoogle Scholar
  19. 134.
    Dalsmo, M., Egeland, O.: State feedback H -suboptimal control of a rigid spacecraft. IEEE Trans. Autom. Control 42, 1186–1189 (1997) MathSciNetMATHCrossRefGoogle Scholar
  20. 135.
    Kang, W.: Nonlinear control and its applications to rigid spacecraft. IEEE Trans. Autom. Control 40, 1281–1285 (1995) MATHCrossRefGoogle Scholar
  21. 136.
    Kristic, M., Tsiotras, P.: Inverse optimal stabilization of rigid spacecraft. IEEE Trans. Autom. Control 44, 1042–1049 (1999) CrossRefGoogle Scholar
  22. 137.
    Yang, C.D., Kung, C.C.: Nonlinear H flight control of general six degree-of-freedom motions. J. Guid. Control Dyn. 23(2), 278–288 (2000) CrossRefGoogle Scholar
  23. 138.
    Show, L.-L., Juang, J.-C., Jan, Y.-W.: An LMI-based nonlinear attitude control approach. IEEE Trans. Control Syst. Technol. 11(1), 73–83 (2003) CrossRefGoogle Scholar
  24. 139.
    Pacheco, R.P., Steffen, V. Jr.: Orthogonal function techniques for the identification of nonlinear mechanical systems. Mater. Sci. Forum 440–441, 59–68 (2003). Trans Tech Pubs, Switzerland CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations