Quaternion Atomic Function for Image Processing

  • Eduardo Bayro-Corrochano
  • Eduardo Ulises Moya-Sánchez


In this work we introduce a new kernel for image processing called the atomic function. This kernel is compact in the spatial domain, and it can be adapted to the behavior of the input signal by broadening or narrowing its band ensuring a maximum signal-to-noise ratio. It can be used for smooth differentiation of images in the quaternion algebra framework. We discuss the role of the quaternion atomic function with respect to monogenic signals. We then propose a steerable quaternion wavelet scheme for image structure and contour detection. Making use of the generalized Radon transform and images processed with the quaternion wavelet atomic function transform, we detect shape contours in color images. We believe that the atomic function is a promising kernel for image processing and scene analysis.


Atomic Function Geometric Algebra Monogenic Function Quaternion Algebra Complex Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We want to thank the financial support of the SEP/CONACYT - 2007-1 82084 grant.


  1. 1.
    Bayro-Corrochano, E.: Geometric Computing for Wavelet Transforms, Robot Vision, Learning, Control and Action. Springer, Berlin (2010) MATHGoogle Scholar
  2. 2.
    Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, Boston (1982) MATHGoogle Scholar
  3. 3.
    Bülow, T.: Hypercomplex spectral signal representations for the processing and analysis of images. PhD thesis, Christian-Albert, Kiel University (1999) Google Scholar
  4. 4.
    Delanghe, R.: Clifford analysis: history and perspective. In: Computational Methods and Function Theory, vol. 1, pp. 107–153 (2001) Google Scholar
  5. 5.
    Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(2), 3136–3144 (2007) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gelf’and, M.I., Graev, M.I., Vilenkin, N.Ya.: Generalized Functions, vol. 5, Integral Geometry and Representation Theory. Academic Press, San Diego (1966) Google Scholar
  7. 7.
    Guyaev, Yu.V., Kravchenko, V.F.: A new class of WA-systems of Kravchenko–Rvachev functions. Moscow Dokl. Math. 75(2), 325–332 (2007) Google Scholar
  8. 8.
    Hamilton, W.R.: Elements of Quaternions. Chelsea, New York (1969). Longmans Green, London (1866) Google Scholar
  9. 9.
    Gorshkov, A., Kravchenko, V.F., Rvachev, V.A.: Estimation of the discrete derivative of a signal on the basis of atomic functions. Izmer. Tekh. 1(8), 10 (1992) Google Scholar
  10. 10.
    Kingsbury, N.: Image processing with complex wavelets. Philos. Trans. R. Soc. Lond. A 357, 2543–2560 (1999) MATHCrossRefGoogle Scholar
  11. 11.
    Kovesi, P.: Invariant measures of images features from phase information. PhD thesis, University of Western Australia (1996) Google Scholar
  12. 12.
    Kravchenko, V.F., Perez-Meana, H.M., Ponomaryov, V.I.: Adaptive Digital Processing of Multidimensional Signals with Applications. Fizmatlit, Moscow (2009) Google Scholar
  13. 13.
    Magarey, J.F.A., Kingsbury, N.G.: Motion estimation using a complex-valued wavelet transform. IEEE Trans. Image Process. 6, 549–565 (1998) Google Scholar
  14. 14.
    Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989) MATHCrossRefGoogle Scholar
  15. 15.
    Mitrea, M.: Clifford Waveletes, Singular Integrals and Hardy Spaces. Lecture Notes in Mathematics, vol. 1575. Springer, Berlin (1994) Google Scholar
  16. 16.
    Nabighian, M.N.: Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: fundamental relations. Geophysics 49(6), 780–786 (1984) CrossRefGoogle Scholar
  17. 17.
    Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Sächs. Akad. Wiss., Leipzig. Math.-Phys. Kl. 69, 262–277 (1917) Google Scholar
  18. 18.
    Rvachev, V.A.: Compactly supported solution of functional–differential equations and their applications. Russ. Math. Surv. 45(1), 87–120 (1990) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Pan, H.-P.: Uniform full information image matching complex conjugate wavelet pyramids. In: XVIII ISPRS Congress, vol. XXXI, Vienna, July 1996 Google Scholar
  20. 20.
    Kolodyazhnya, V.M., Rvachev, V.A.: Atomic functions: generalization to the multivariable case and promising applications. Cybern. Syst. Anal. 43(6), 893–911 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Eduardo Bayro-Corrochano
    • 1
  • Eduardo Ulises Moya-Sánchez
    • 1
  1. 1.Campus GuadalajaraCINVESTAVJaliscoMexico

Personalised recommendations