Skip to main content

On the Modern Notion of a Moving Frame

  • Chapter
Guide to Geometric Algebra in Practice
  • 2874 Accesses

Abstract

A tutorial on the modern definition and application of moving frames, with a variety of examples and exercises, is given. We show three types of invariants; differential, joint and integral, and the running example is the linear action of SL(2) on smooth surfaces, on sets of points in the plane, and path integrals over curves in the plane. We also give details of moving frames for the group of rotations and translations acting on smooth curves, and on discrete sets of points, in the conformal geometric algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Editorial note: In this chapter only, the ‘⋅’ does not denote the dot product, but function composition; this can also be used for a function ‘acting on’ its argument.

  2. 2.

    A right action satisfies gâ‹…(hâ‹…z)=(hg)â‹…z. The moving frame theory for right actions is entirely equivalent.

  3. 3.

    Editorial note: To relate to a standard term in robotics, in Cartan’s examples moving frames simplify to ‘the group element that sends the frame of vectors at a point to a reference frame of vectors at the origin’.

  4. 4.

    For any , if one stacks the tangent vectors to at z and the tangent vectors of the orbit at z as columns in a matrix, then the matrix must have \(n=\dim M\) columns and have full rank. The tangent vectors to the orbits can be obtained by differentiating gâ‹…z with respect to the group parameters at g=e, the identity of the group.

  5. 5.

    The formulae are fully explained in terms of undergraduate multi-variable calculus in [21], while the Fels and Olver papers use (nontrivial) exterior calculus.

  6. 6.

    We have \(I^{\alpha}_{KJ}=I^{\alpha}_{JK}\) since they are equal to the invariantisation of \(u^{\alpha}_{KJ}=u^{\alpha}_{JK}\) respectively.

References

  1. Boutin, M.: On orbit dimensions under a simultaneous Lie group action on n copies of a manifold. J. Lie Theory 12, 191–203 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Cartan, E.: Oeuvres complètes. Gauthier-Villars, Paris (1952–1955)

    Google Scholar 

  3. Chhay, M., Hamdouni, A.: A new construction for invariant numerical schemes using moving frames. C. R. Acad. Sci. Mec. 338, 97–101 (2010)

    MATH  Google Scholar 

  4. Fels, M., Olver, P.J.: Moving coframes I. Acta Appl. Math. 51, 161–213 (1998)

    Article  MathSciNet  Google Scholar 

  5. Fels, M., Olver, P.J.: Moving coframes II. Acta Appl. Math. 55, 127–208 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feng, S., Kogan, I., Krim, H.: Classification of curves in 2D and 3D via affine integral signatures. Acta Appl. Math. (2010). doi:10.1007/s10440-008-9353-9

  7. Green, M.L.: The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces. Duke Math. J. 45, 735–779 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Golubitsky, O., Mazalov, V., Watt, S.M.: Toward affine recognition of handwritten mathematical characters. In: Proc. International Workshop on Document Analysis Systems (DAS 2010), Boston, USA, June 9–11 2010, pp. 35–42. ACM, New York (2010)

    Chapter  Google Scholar 

  9. Gonçalves, T.M.N., Mansfield, E.L.: On moving frames and Noether’s conservation laws. arxiv.org/abs/1006.4660 (2010)

  10. Griffiths, P.: On Cartan’s methods of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry. Duke Math. J. 41, 775–814 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hubert, E.: Differential algebra for derivations with nontrivial commutation rules. J. Pure Appl. Algebra 200(1–2), 163–190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hubert, E.: Differential invariants of a Lie group action: syzygies on a generating set. J. Symb. Comput. 44(4), 382–416 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hubert, E.: Generation properties of Maurer–Cartan invariants, preprint [hal:inria-00194528] (2009)

    Google Scholar 

  14. Hubert, E., Kogan, I.A.: Smooth and algebraic invariants of a group action. Local and global constructions. Found. Comput. Math. 7(4), 345–383 (2007)

    Article  MathSciNet  Google Scholar 

  15. Hubert, E., Kogan, I.A.: Rational invariants of a group action. Construction and rewriting. J. Symb. Comput. 42(1–2), 203–217 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, P., Olver, P.J.: Geometric integration via multi-space. Regul. Chaotic Dyn. 9(3), 213–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, P.: Invariantization of numerical schemes using moving frames. BIT Numer. Math. 47(3), 525 (2007)

    Article  MATH  Google Scholar 

  18. Kim, P.: Invariantization of the Crank–Nicolson method for Burgers’ equation. Physica D: Nonlinear Phenomena 237(2), 243 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kogan, I.A., Olver, P.J.: Invariant Euler–Lagrange equations and the invariant variational bicomplex. Acta Appl. Math. 76, 137–193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mansfield, E.L.: Indiff a Maple package to calculate with differential expressions referred to a moving frame. Available from http://www.kent.ac.uk/ims/personal/elm2 (2001)

  21. Mansfield, E.L.: A Practical Guide to the Invariant Calculus. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  22. Olver, P.J.: Joint invariant signatures. Found. Comput. Math. 1, 3–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Olver, P.J.: Moving frames—in geometry, algebra, computer vision, and numerical analysis. In: DeVore, R., Iserles, A., Suli, E. (eds.) Foundations of Computational Mathematics. London Math. Soc. Lecture Note Series, vol. 284, pp. 267–297. Cambridge University Press, Cambridge (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Mansfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mansfield, E., Zhao, J. (2011). On the Modern Notion of a Moving Frame. In: Dorst, L., Lasenby, J. (eds) Guide to Geometric Algebra in Practice. Springer, London. https://doi.org/10.1007/978-0-85729-811-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-811-9_20

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-810-2

  • Online ISBN: 978-0-85729-811-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics