Genetic and Evolutionary Algorithms for PSP

  • Waldemar Rebizant
  • Janusz Szafran
  • Andrzej Wiszniewski
Part of the Signals and Communication Technology book series (SCT)


In this chapter the procedures originating from biological evolution are presented that can be applied e.g. for intelligent searches and optimization in power systems. The procedures belong to the so-called “biological programming” family, which is not limited to the genetic algorithms only. In wider sense the neural networks described in Chap. 12, being an analogy of human brain, are also good examples of this family.


Genetic Algorithm Quality Index Goal Function Optimal Power Flow Genetic Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdel-Magid YL, Abido MA (2003) Optimal multiobjective design of robust power system stabilizers using genetic algorithms. IEEE Trans Power Syst 18:1125–1132CrossRefGoogle Scholar
  2. 2.
    Anderson PH, Fouad AA (1977) Power system control and stability. The Iowa State University Press, AmesGoogle Scholar
  3. 3.
    Arroyo JM, Conejo AJ (2002) A parallel repair genetic algorithm to solve the unit commitment problem. IEEE Trans Power Syst 17:1216–1224CrossRefGoogle Scholar
  4. 4.
    Beyer HG (2001) The theory of evolution strategies. Springer, BerlinGoogle Scholar
  5. 5.
    Chen L, Petroianu A (1999) Application of evolutionary algorithms to the optimization of sub-optimal H PSS tuning. In: Proceedings of the 13th PSCC conference, Trondheim, pp 170–176Google Scholar
  6. 6.
    Coury DV, Oleskovicz M, Delbem ACB, Simões EV, Silva TV, De Carvalho JR, Barbosa D (2009) Frequency relaying based on genetic algorithm using FPGAs. In: Proceedings of the 15th international conference on intelligent systems application to power systems, Curitiba, Brazil, paper 250Google Scholar
  7. 7.
    Dong ZY, Makarov YV, Hill DJ (1998) Analysis of small signal stability margins using genetic optimization. Electr Power Syst Res 46:195–204CrossRefGoogle Scholar
  8. 8.
    Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, BerlinMATHGoogle Scholar
  9. 9.
    Gerbex S, Cherkaoui R, Germond A (2001) Optimal location of multi-type FACTS devices in a power system by means of genetic algorithm. IEEE Trans Power Syst 16:537–544CrossRefGoogle Scholar
  10. 10.
    Glover JD, Sarma M (1994) Power systems analysis and design. PWS Publishing Company, BostonGoogle Scholar
  11. 11.
    Goldberg DE (1989) Genetic algorithms in search optimization and machine learning. Kluwer Academic Publishers, BostonMATHGoogle Scholar
  12. 12.
    Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann ArborGoogle Scholar
  13. 13.
    IEEE Committee Report: Computer Representation of Excitation Systems (1968) IEEE Trans PAS 6:1459−1463Google Scholar
  14. 14.
    IEEE Committee Report: Dynamic Models for Steam and Hydro Turbines in Power System Studies (1973) IEEE Trans PAS 6:1904−1913Google Scholar
  15. 15.
    King WDJ, Özveren CS, Bradley DA (2007) Economic load dispatch optimization of renewable energy in power system using genetic algorithm. In: Proceedings of the powertech conference, Lausanne, Switzerland, Paper 531Google Scholar
  16. 16.
    Koza J (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, CambridgeMATHGoogle Scholar
  17. 17.
    Lai LL, Ma JT, Yokoma R, Zhao M (1997) Improved genetic algorithms for optimal power flow under both normal and contingent operation states. Electr Power Energy Syst 19:287–292CrossRefGoogle Scholar
  18. 18.
    Luan WP, Irving MR, Daniel JS (2002) Genetic algorithm for supply restoration and optimal load shedding in power system distribution networks. Proc IEE Gener Transm Distrib 149:145–151CrossRefGoogle Scholar
  19. 19.
    Rebizant W, Bejmert D (2006) Genetic optimization procedure for design of synchronous generator voltage and speed control systems. In: Proceedings of the international symposium on modern electric power systems, Wroclaw, Poland, pp 210–215Google Scholar
  20. 20.
    Rebizant W, Bejmert D (2007) Current-transformer saturation detection with genetically optimized neural networks. IEEE Trans Power Deliv 22:820–827CrossRefGoogle Scholar
  21. 21.
    Rebizant W, Bejmert D (2007) Genetic optimization of ANN-based decision units for protection purposes. Przegląd Elektrotechniczny 4:129–133Google Scholar
  22. 22.
    Rebizant W, Szafran J, Feser K, Oechsle F (2001) Evolutionary improvement of neural classifiers for generator out-of-step protection. In: Proceedings of the IEEE porto powertech conference, vol. 4. Porto, Portugal, Paper PRl1223Google Scholar
  23. 23.
    Rebizant W, Szafran J, Feser K, Oechsle F (2002) Evolutionäre Optimierung neuronaler Klassifikatoren für den Generatorschutz. ELEKTRIE, Berlin 56:51–56Google Scholar
  24. 24.
    Sharaf AM, Lie TT (1997) An artificial neural network coordinated excitation/governor controller for synchronous generators. Electr Mach Power Syst 25:1–14CrossRefGoogle Scholar
  25. 25.
    Yong T, Lasseter RH, Cui W (1998) Coordination of excitation and governing control based on fuzzy logic. IEEE publication no. 0-7803-4403-0/98, pp 737−742Google Scholar

Copyright information

© Springer-Verlag London Limited  2011

Authors and Affiliations

  • Waldemar Rebizant
    • 1
  • Janusz Szafran
    • 1
  • Andrzej Wiszniewski
    • 1
  1. 1.Wroclaw University of TechnologyWroclawPoland

Personalised recommendations