Skip to main content

Impact of the Physiological Effects of Aging on the Pharmacokinetics and Pharmacodynamics of Systemic Lung Cancer Treatment

  • Chapter
  • First Online:
Management of Lung Cancer in Older People

Abstract

Pharmacokinetics includes the study of the mechanisms of absorption and distribution of an administered drug, the rate at which a drug action begins and the duration of the effect, the chemical changes of the substance in the body, and the effects and routes of excretion of the metabolites of the drug. Pharmacodynamics is the study of the biochemical and physiological effects of drugs on the body and the relationship between drug concentration and effect. Overall, pharmacokinetics is the study of what the body does to a drug, whereas pharmacodynamics is often summarized as the study of what a drug does to the body. Pharmacokinetic interactions involve one drug or substance altering the absorption, distribution, metabolism, or elimination of another drug or substance. A common example of a pharmacokinetic interaction occurs when two drugs compete for the same metabolic pathway. When the pathway becomes saturated neither drug can be metabolized fully, which results in higher serum concentrations of the agents and can lead to clinically unfavorable consequences. Pharmacodynamic interactions occur when two drugs or substances have similar molecular targets, but do not affect the pharmacokinetic parameters of each other. Pharmacodynamics is related to the pharmacological activity of the interacting drugs, e.g., synergism, antagonism, altered cellular transport, and effect on the receptor site. When two or more drugs that have similar pharmacodynamic activity are coadministered, the additive effects might result in an excessive response or toxicity. Pharmacodynamic interactions occur when two or more drugs have mechanisms of action that result in the same physiological outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brocklehurst JC. Textbook of geriatric medicine and gerontology. New York: Churchill Livingstone; 1985.

    Google Scholar 

  2. Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007;76:348–51.

    Google Scholar 

  3. Cova D, Balducci L. Cancer chemotherapy in the older patient. In: Balducci L, Lyman GH, Ershler WB, et al., editors. Comprehensive geriatric oncology. 2nd ed. London: Taylor and Francis; 2004. p. 463–88.

    Google Scholar 

  4. Tranchant B. Pharmacology of cytotoxic agents: guidelines for dose adaption. Acts of the 7th International Conference on Geriatric Oncology Cancer in the Elderly. Boston, 27–28 Sep 2002. p.127–8.

    Google Scholar 

  5. Borkowski JM, Duerr M, Donehower RC, et al. Relation between age and clearance rate of nine investigational anticancer drugs from phase I pharmacokinetics data. Cancer Chemother Pharmacol. 1994;33:493–6.

    Article  PubMed  CAS  Google Scholar 

  6. Meiner S. Polypharmacy in the elderly. Early intervention can prevent complications. Adv Nurse Pract. 1997;5:28–34.

    PubMed  CAS  Google Scholar 

  7. Loadman PM, Bibby MC. Pharmacokinetics drug interactions with anticancer drugs. Clin Pharmacokinet. 1994;26:486–500.

    Article  PubMed  CAS  Google Scholar 

  8. McLeod HL. Clinically relevant drug-drug interactions in oncology. Br J Clin Pharmacol. 1998;45:539–44.

    Article  PubMed  CAS  Google Scholar 

  9. Skirvin JA, Lichtman SM. Pharmacokinetic considerations of oral chemotherapy in elderly patients with cancer. Drugs Aging. 2002;19:25–42.

    Article  PubMed  CAS  Google Scholar 

  10. Lichtman SM, Skirvin JA. Pharmacology of antineoplastic agents in older cancer patients. Oncology. 2000;14:1743–55.

    PubMed  CAS  Google Scholar 

  11. Jørgensen TL, Hallas J, Land LH, et al. Comorbidity and polypharmacy in elderly cancer patients: the significance on treatment outcome and tolerance. J Geriatr Oncol. 2010;1:87–102.

    Article  Google Scholar 

  12. Gelman RS, Taylor SG. Cyclophosphamide, methotrexate and 5 fluorouracil chemotherapy in woman more than 65 year old with advanced breast cancer. The elimination of age trends in toxicity by using doses based on creatinine clearance. J Clin Oncol. 1984;2:1406–14.

    Google Scholar 

  13. Kinzel PE, Dorr RT. Anticancer drug renal toxicity and elimination: dosing guidelines for altered renal function. Cancer Treat Rev. 1995;21:33–64.

    Article  Google Scholar 

  14. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.

    Article  PubMed  CAS  Google Scholar 

  15. Calvert DH, Newell DR, Gumbrell LA, et al. Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol. 1989;7:1748–56.

    PubMed  CAS  Google Scholar 

  16. Sotaniemi EA, Arranto AJ, Pelkonen O, et al. Age and cytochrome P450-linked drug metabolism in humans: an analysis of 226 subjects with equal histopathologic conditions. Clin Pharmacol Ther. 1997;61:331–9.

    Article  PubMed  CAS  Google Scholar 

  17. Lichtman SM, Hollis D, Miller AA, et al. Prospective evaluation of the relationship of patient age and paclitaxel clinical pharmacology: Cancer and Leukemia Group B (CALGB 9762). J Clin Oncol. 2006;24:1846–51.

    Article  PubMed  CAS  Google Scholar 

  18. Fidias P, Supko JG, Martins R, et al. A phase II study of weekly paclitaxel in elderly patients with advanced non-small cell lung cancer. Clin Cancer Res. 2001;7:3942–9.

    PubMed  CAS  Google Scholar 

  19. Smorenburg CH, ten Tije AJ, Verweij J, et al. Altered clearance of unbound paclitaxel in elderly patients with metastatic breast cancer. Eur J Cancer. 2003;39:196–202.

    Article  PubMed  CAS  Google Scholar 

  20. Bruno R, Vivier N, Veyrat-Follet C, et al. Population pharmacokinetics and pharmacokinetic-pharmacodynamic relationships for docetaxel. Invest New Drugs. 2001;19:163–9.

    Article  PubMed  CAS  Google Scholar 

  21. Hurria A, Flemming M, Baker SD, et al. Pharmacokinetics and toxicity of weekly docetaxel in the elderly. Clin Cancer Res. 2006;12:6100–5.

    Article  PubMed  CAS  Google Scholar 

  22. Minami H, Ohe Y, Niho S, et al. Comparison of pharmacokinetics and pharmacodynamics of docetaxel and cisplatin in elderly and non-elderly patients: why toxicity increased in elderly patients? J Clin Oncol. 2004;22:2901–8.

    Article  PubMed  CAS  Google Scholar 

  23. Sorio R, Robieux I, Galligioni E, et al. Pharmacokinetics and tolerance of vinorelbine in elderly patients with advanced metastatic breast cancer. Eur J Cancer. 1997;33:301–3.

    Article  PubMed  CAS  Google Scholar 

  24. Gauvin A, Pinguet F, Culine S, et al. Bayesian estimate of vinorelbine pharmacokinetic parameters in elderly patients with advanced metastatic cancer. Clin Cancer Res. 2000;6:2690–5.

    PubMed  CAS  Google Scholar 

  25. Miller AA, Rosner GL, Ratain MJ, et al. Pharmacology of 21-day oral etoposide given in combination with i.v. cisplatin in patients with extensive-stage small cell lung cancer: a cancer and leukemia group B study (CALGB 9062). Clin Cancer Res. 1997;3:719–25.

    PubMed  CAS  Google Scholar 

  26. Ando M, Minami H, Ando Y, et al. Pharmacological analysis of etoposide in elderly patients with lung cancer. Clin Cancer Res. 1999;5:1690–5.

    PubMed  CAS  Google Scholar 

  27. Daugaard G, Abildgaard U. Cisplatin nephrotoxicity. Cancer Chemother Pharmacol. 1998;25:1–9.

    Article  Google Scholar 

  28. Thyss A, Saudes L, Otto J, et al. Renal tolerance of cisplatin in patients more than 80 years old. J Clin Oncol. 1994;12:2121–5.

    PubMed  CAS  Google Scholar 

  29. Cubillo A, Cornide M, Lopez JL, et al. Renal tolerance to cisplatin in patients 70 years and older. Am J Clin Oncol. 2001;24:192–7.

    Article  PubMed  CAS  Google Scholar 

  30. Kemp G, Rose P, Lurain J, et al. Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: result of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol. 1996;14:2101–12.

    PubMed  CAS  Google Scholar 

  31. Calvert AH, Egorin MJ. Carboplatin dosing formulae: gender bias and the use of creatinine-based methodologies. Eur J Cancer. 2002;38:11–6.

    Article  PubMed  CAS  Google Scholar 

  32. Joel SP, Shah R, Slevin ML. Etoposide dosage and pharmacodynamics. Cancer Chemother Pharmacol. 1994;34(Suppl):S69–75.

    Article  PubMed  Google Scholar 

  33. Robieux I, Sorio R, Borsetti E, et al. Pharmacokinetics of vinorelbine in patients with liver metastases. Clin Pharmacol Ther. 1996;59:32–40.

    Article  PubMed  CAS  Google Scholar 

  34. Venook AP, Egorin MJ, Rosner GL, et al. Phase I and pharmacokinetic trial of gemcitabine in patients with hepatic or renal dysfunction. Cancer and Leukemia Group B 9565. J Clin Oncol. 2000;18:2780–7.

    PubMed  CAS  Google Scholar 

  35. Venook AP, Egorin MJ, Rosner GL, et al. Phase I and pharmacokinetic trial of paclitaxel in patients with hepatic dysfunction: cancer and leukemia group B 9264. J Clin Oncol. 1998;16:1811–9.

    PubMed  CAS  Google Scholar 

  36. Vahdat L, Papadopoulos K, Lange D, et al. Reduction of paclitaxel–induced peripheral neuropathy with glutamine. Clin Cancer Res. 2001;7:1192–7.

    PubMed  CAS  Google Scholar 

  37. Vodovar D, Mongardon N, Moachon L, et al. Severe docetaxel overdose induced by pharmacokinetic interaction with dronedarone. J Clin Oncol. 2011;29:e694–5.

    Article  PubMed  Google Scholar 

  38. Burris H. Optimal use of docetaxel (Taxotere): maximizing its potential. Anticancer Drugs. 1996;7(Supp 2):25–8.

    PubMed  CAS  Google Scholar 

  39. Bruno R, Hille D, Riva A, et al. Population pharmacokinetics/pharmacodynamics of docetaxel in phase II studies in patients with cancer. J Clin Oncol. 1998;16:187–96.

    PubMed  CAS  Google Scholar 

  40. Hainsworth JD, Burris HA, Litchy S, et al. Weekly docetaxel in the treatment of elderly patients with advanced nonsmall cell lung carcinoma. A Minnie Pearl Cancer Research Network Phase II Trial. Cancer. 2000;89:328–33.

    Article  PubMed  CAS  Google Scholar 

  41. Hainsworth JD, Burris HA, Erland JB, et al. Phase I trial of docetaxel administered by weekly infusion in patients with advanced refractory cancer. J Clin Oncol. 1998;16:2164–8.

    PubMed  CAS  Google Scholar 

  42. Saltz LB. Irinotecan in the first-line treatment of colorectal cancer. Oncology (Williston Park). 1998;12:54–8.

    CAS  Google Scholar 

  43. Friedman HS, Petros WP, Friedman AH, et al. Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol. 1999;17:1516–25.

    PubMed  CAS  Google Scholar 

  44. Noda K, Nishiwaki Y, Kawahara M, et al. Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N Engl J Med. 2002;346:85–91.

    Article  PubMed  CAS  Google Scholar 

  45. Kehrer DF, Sparreboon A, Verweij J, et al. Modulation of irinotecan-induced diarrhea by cotreatment with neomycin in cancer patients. Clin Cancer Res. 2001;7:1136–41.

    PubMed  CAS  Google Scholar 

  46. Skirvin J, Relias V. Topoisomerase inhibitors: 2. Irinotecan. J Oncol Pharm Pract. 1998;4:103–16.

    Article  CAS  Google Scholar 

  47. Rothenberg ML, Cox JV, DeVore RF, et al. A multicenter, phase II trial of weekly irinotecan (CPT-11) in patients with previously treated colorectal carcinoma. Cancer. 1999;85:786–95.

    Article  PubMed  CAS  Google Scholar 

  48. Rougier P, Van Cutsem E, Bajetta E, et al. Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. Lancet. 1998;352:1407–12.

    Article  PubMed  CAS  Google Scholar 

  49. Relias V, Skirvin JA. Topoisomerase I inhibitors: 1. Topotecan. J Oncol Pharm Pract. 1997;3:173–85.

    Article  CAS  Google Scholar 

  50. O’ Reilly S, Armstrong DK, Grochow LB. Life-threatening myelosuppression in patients with occult renal impairment receiving topotecan (letter). Gynecol Oncol. 1997;67:329–30.

    Article  Google Scholar 

  51. Shih C, Chen VJ, Gossetti LS, et al. LY231514, a pyrrolo[2, 3-d]pyrimidine-based antifolate that inhibits multiple folate requiring enzymes. Cancer Res. 1997;57:1116–23.

    PubMed  CAS  Google Scholar 

  52. Manegold C. Pemetrexed (Alimta, MTA, multitargeted antifolate, LY231514) for malignant pleural mesothelioma. Semin Oncol. 2003;30 Suppl 10:32–6.

    Article  PubMed  CAS  Google Scholar 

  53. Rossi A, Ricciardi S, Maione P, et al. Pemetrexed in the treatment of advanced non-squamous lung cancer. Lung Cancer. 2009;66:141–9.

    Article  PubMed  Google Scholar 

  54. Hazarika M, White RM, Johnson JR, et al. FDA drug approval summaries: pemetrexed (Alimta). Oncologist. 2004;9:482–8.

    Article  PubMed  CAS  Google Scholar 

  55. Ferrara N, Hillan KJ, Gerber HP, et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3:391–400.

    Article  PubMed  CAS  Google Scholar 

  56. Gordon MS, Margolin K, Talpaz G, et al. Phase I safety and pharmacokinetics study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol. 2001;19:843–50.

    PubMed  CAS  Google Scholar 

  57. Gridelli C, Rossi A. Unanswered questions: monoclonal antibodies in the treatment of advanced non-small cell lung cancer. Oncology (Williston Park). 2010;24:1216–23.

    Google Scholar 

  58. Gaudreault J. Pharmacokinetics (PK) of bevacizumab (BV) in colorectal cancer. Clin Pharmacol Ther. 2001;69 Suppl 2:P25.

    Google Scholar 

  59. Pollack VA, Savage DM, Baker DA, et al. Inhibition of epidermal growth factor receptor-­associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J Pharmacol Exp Ther. 1999;291:739–48.

    PubMed  CAS  Google Scholar 

  60. Hidalgo M, Bloedow D. Pharmacokinetics and pharmacodynamics: maximizing the clinical potential of erlotinib (Tarceva). Semin Oncol. 2003;30 Suppl 7:25–33.

    Article  PubMed  CAS  Google Scholar 

  61. Frohna P, Lu J, Eppler S, et al. Evaluation of the absolute oral bioavailability and bioequivalence of erlotinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in a randomized, crossover study in healthy subjects. J Clin Pharmacol. 2006;43:282–90.

    Article  Google Scholar 

  62. Smith J. Erlotinib: small-molecule targeted therapy in the treatment of non-small-cell lung cancer. Clin Ther. 2005;27:1513–34.

    Article  PubMed  CAS  Google Scholar 

  63. Hidalgo M, Siu LL, Nemunaitis J, et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J Clin Oncol. 2001;19:3267–79.

    PubMed  CAS  Google Scholar 

  64. Karp DD, Ferrante KJ, Tensfeldt TG, et al. A phase I dose escalation study of epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor CP-358,774 in patients (pts) with advanced solid tumours. Lung Cancer. 2000;29 Suppl 1:65 (Abstr. 208).

    Article  Google Scholar 

  65. Hughes AN, O’Brien MER, Petty WJ, et al. Overcoming CYP1A1/1A2 mediated induction of metabolism by escalating erlotinib dose in current smokers. J Clin Oncol. 2009;27:1220–6.

    Article  PubMed  CAS  Google Scholar 

  66. Malik SN, Siu LL, Rowinsky EK, et al. Pharmacodynamic evaluation of the epidermal growth factor receptor inhibitor OSI-774 in human epidermis of cancer patients. Clin Cancer Res. 2003;9:2478–86.

    PubMed  CAS  Google Scholar 

  67. Gridelli C, Maione P, Galetta D, et al. Safety profile of erlotinib in patients with advanced non-small cell lung cancer with chronic renal failure. J Thorac Oncol. 2007;2:96–8.

    Article  PubMed  Google Scholar 

  68. Nakagawa K, Tamura T, Negoro S, et al. Phase I pharmacokinetic trial of the selective oral epidermal growth factor receptor tyrosine kinase inhibitor gefitinib (‘Iressa’, ZD1839) in Japanese patients with solid malignant tumors. Ann Oncol. 2003;14:922–30.

    Article  PubMed  CAS  Google Scholar 

  69. Swaisland H, Laight A, Stafford L, et al. Pharmacokinetics and tolerability of the orally active selective epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in healthy volunteers. Clin Pharmacokinet. 2001;40:297–306.

    Article  PubMed  CAS  Google Scholar 

  70. McKillop D, McCormick AD, Millar A, et al. Cytochrome P450-dependent metabolism of gefitinib. Xenobiotica. 2005;35:39–50.

    Article  PubMed  CAS  Google Scholar 

  71. van Erp NP, Gelderblom H, Guchelaar HJ. Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009;35:692–706.

    Article  PubMed  Google Scholar 

  72. Swaisland HC, Ranson M, Smith RP, et al. Pharmacokinetic drug interactions of gefitinib with rifampicin, itraconazole and metoprolol. Clin Pharmacokinet. 2005;44:1067–81.

    Article  PubMed  CAS  Google Scholar 

  73. Albanell J, Rojo F, Averbuch S, et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J Clin Oncol. 2002;20:110–24.

    Article  PubMed  CAS  Google Scholar 

  74. Rossi A, Maione P, Del Gaizo F, et al. Safety profile of gefitinib in advanced non-small cell lung cancer elderly patients with chronic renal failure: two clinical cases. Lung Cancer. 2005;47:421–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazzaro Repetto MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Rossi, A., Cova, D., Leo, S., Repetto, L. (2013). Impact of the Physiological Effects of Aging on the Pharmacokinetics and Pharmacodynamics of Systemic Lung Cancer Treatment. In: Gridelli, C., Audisio, R. (eds) Management of Lung Cancer in Older People. Springer, London. https://doi.org/10.1007/978-0-85729-793-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-793-8_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-792-1

  • Online ISBN: 978-0-85729-793-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics