Skip to main content

Support Vector Machines for Modeling Interstate Conflict

  • Chapter
  • First Online:
  • 562 Accesses

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Abstract

Militarized conflict is one of the risks that have a significant impact on society. Militarized interstate dispute is defined as an outcome of interstate interactions, which result either in peace or conflict. The effective prediction of the possibility of conflict between states is an important decision support tool for policy makers. In previous chapters, neural networks were implemented to predict militarized interstate disputes. Support vector machines have proved to be excellent predictors and hence are introduced in this chapter for the prediction of militarized interstate disputes and then compared with the hybrid Monte Carlo trained multi-layer perceptron neural networks. The results demonstrated that support vector machines predict militarized interstate dispute better than neural networks, while neural networks give a more consistent and easy to interpret sensitivity analysis than do support vector machines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aizerman, M., Braverman, E., Rozonoer, L.: Theoretical foundations of the potential function method in pattern recognition learning. Autom. Rem. Contr. 25, 821–837 (1964)

    MathSciNet  Google Scholar 

  • Alenezi, A., Moses, S.A., Trafalis, T.B.: Real-time prediction of order flowtimes using support vector regression. Comp. Oper. Res. 35, 3489–3503 (2007)

    Article  Google Scholar 

  • Beck, N., King, G., Zeng, L.: Improving quantitative studies of international conflict: a conjecture. Am. Politic Sci. Rev. 94, 21–33 (2000)

    Article  Google Scholar 

  • Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  • Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Haussler, D. (ed.) Proceedings of the 5th Annual ACM Workshop on COLT, pp. 144–152. ACM Press, Pittsburgh (1992)

    Chapter  Google Scholar 

  • Burges, C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)

    Article  Google Scholar 

  • Chang, B.R., Tsai, H.F., Young, C.-P.: Diversity of quantum optimizations for training adaptive support vector regression and its prediction applications. Expert Syst. Appl. 34, 2612–2621 (2007)

    Article  Google Scholar 

  • Chen, D., Odobez, J.: Comparison of support vector machine and neural network for text texture verification. Technical report IDIAP-RR-02 19. Martigny, IDIAP Research Institute (2002)

    Google Scholar 

  • Chen, J.L., Liu, H.B., Wu, W., Xie, D.T.: Estimation of monthly solar radiation from measured temperatures using support vector machines – a case study. Renew. Eng. 36, 413–420 (2011)

    Article  Google Scholar 

  • Chuang, C.-C.: Extended support vector interval regression networks for interval input–output data. Info. Sci. 178, 871–891 (2008)

    Article  MATH  Google Scholar 

  • Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  • Gidudu, A., Hulley, G., Marwala, T.: Image classification using SVMs: one-against-one vs one-against-all. In: Proceedings of the 28th Asian Conference on Remote Sensing. CD-Rom (2007)

    Google Scholar 

  • Gochman, C., Maoz, Z.: Militarized interstate disputes 1816–1976. J. Confl. Res. 28, 585–615 (1984)

    Article  Google Scholar 

  • Gunn, S.R.: Support vector machines for classification and regression. ISIS technical report. University of Southampton (1997)

    Google Scholar 

  • Guo, G., Zhang, J.S.: Reducing examples to accelerate support vector regression. Pattern Recognit. Letts. 28, 2173–2183 (2007)

    Article  Google Scholar 

  • Habtemariam, E.: Artificial intelligence for conflict management. Master thesis, University of the Witwatersrand, Johannesburg (2006)

    Google Scholar 

  • Habtemariam, E., Marwala, T., Lagazio, M.: Artificial intelligence for conflict management. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 2583–2588. IEEE, Montreal (2005)

    Chapter  Google Scholar 

  • Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  • Jayadeva, R.K., Chandra, S.: Regularized least squares fuzzy support vector regression for financial time series forecasting. Expert Syst. Appl. 178, 3402–3414 (2007)

    Google Scholar 

  • Karush, W.: Minima of functions of several variables with inequalities as side constraints. MSc thesis, University of Chicago (1939)

    Google Scholar 

  • Kim, D., Lee, H., Cho, S.: Response modeling with support vector regression. Expert Syst. Appl. 34, 1102–1108 (2008)

    Article  Google Scholar 

  • Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of 2nd Berkeley symposium, pp. 481–492 (1951)

    Google Scholar 

  • Lagazio, M., Russett, B.: A Neural Network Analysis of Militarized Disputes, 1885–1992: Temporal Stability and Causal Complexity. University of Michigan Press, Ann Arbor (2003)

    Google Scholar 

  • Lau, K.W., Wu, Q.H.: Local prediction of non-linear time series using support vector regression. Pattern Recognit. 41, 1539–1547 (2007)

    Article  Google Scholar 

  • Lin, F., Yeh, C.C., Lee, M.Y.: The use of hybrid manifold learning and support vector machines in the prediction of business failure. Knowledge-Based Syst. 24, 95–101 (2011)

    Article  Google Scholar 

  • Li-Xia, L., Yi-Qi, Z., Liu, X.Y.: Tax forecasting theory and model based on SVM optimized by PSO. Expert Syst. Appl. 38, 116–120 (2011)

    Article  Google Scholar 

  • MacKay, D.J.C.: Bayesian methods for adaptive models. Ph.D. thesis. California Institute of Technology (1991)

    Google Scholar 

  • MacKay, D.J.C.: A practical Bayesian framework for backpropagation networks. Neural Comput. 4, 448–472 (1992)

    Article  Google Scholar 

  • Marwala, T., Lagazio, M.: Modelling and controlling interstate conflict. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1233–1238. IEEE, Budapest (2004)

    Google Scholar 

  • Marwala, T., Chakraverty, S., Mahola, U.: Fault classification using multi-layer perceptrons and support vector machines. Int. J. Eng. Simul. 7, 29–35 (2006)

    Google Scholar 

  • Marwala, T., Lagazio, M., Tettey, T.: An integrated human-computer system for controlling interstate disputes. Int. J. Comput. Appl. 31, 239–246 (2009)

    Google Scholar 

  • Msiza, I.S., Nelwamondo, F.V., Marwala, T.: Artificial neural networks and support vector machines for water demand time series forecasting. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 638–643. IEEE, Montreal (2007)

    Google Scholar 

  • Müller, K.R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An introduction to Kernel-based learning algorithms. IEEE Trans. Neural Nets. 12, 181–201 (2001)

    Article  Google Scholar 

  • Neal, R.M.: Probabilistic inference using Markov Chain Monte Carlo methods. University of Toronto technical teport CRG-TR-93-1. Toronto (1993)

    Google Scholar 

  • Oliveira, A.L.I.: Estimation of software project effort with support vector regression. Neurocomput. 69, 1749–1753 (2006)

    Article  Google Scholar 

  • Oneal, J., Russett, B.: The Kantian peace: the Pacific benefits of democracy, interdependence, and international organization. World Politics 1, 1–37 (1999)

    Article  Google Scholar 

  • Oneal, J., Russett, B.: Clear and clean: the fixed effects of liberal peace. Int. Org. 52, 469–485 (2001)

    Article  Google Scholar 

  • Ortiz-García, E.G., Salcedo-Sanz, S., Pérez-Bellido, Á.M., Portilla-Figueras, J.A., Prieto, L.: Prediction of hourly O3 concentrations using support vector regression algorithms. Atmos. Environ. 44, 4481–4488 (2010)

    Article  Google Scholar 

  • Palanivel, S., Yegnanarayana, B.: Multimodal person authentication using speech, face and visual speech [modalities]. Comp. Vis. Image Underst. 109, 44–55 (2008)

    Article  Google Scholar 

  • Pires, M., Marwala, T.: Option pricing using neural networks and support vector machines. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 1279–1285. IEEE, The Hague (2004)

    Google Scholar 

  • Russett, B., Oneal, J.: Triangulating Peace: Democracy, Interdependence, and International Organizations. W.W. Norton, New York (2001)

    Google Scholar 

  • Schölkopf, B., Smola, A.J.: A short introduction to learning with Kernels. In: Mendelson, S., Smola, A.J. (eds.) Proceedings of the Machine Learning Summer School, pp. 41–64. Springer, Berlin (2003)

    Google Scholar 

  • Shen, R., Fu, Y., Lu, H.: A novel image watermarking scheme based on support vector regression. J. Syst. Softw. 78, 1–8 (2005)

    Article  Google Scholar 

  • Tao, X., Tao, W.: Cutting tool wear identification based on wavelet package and SVM. In: Proceedings of the World Congress on Intelligent Control and Automation, pp. 5953–5957 (2010)

    Google Scholar 

  • Tellaeche, A., Pajares, G., Burgos-Artizzu, X.P., Ribeiro, A.: A computer vision approach for weeds identification through support vector machines. Appl. Soft Comput. J. 11, 908–915 (2009)

    Article  Google Scholar 

  • Thissen, U., Pepers, M., Üstün, B., Melssen, W.J., Buydens, L.M.C.: Comparing support vector machines to PLS for spectral regression applications. Chemomet. Intell. Lab. Syst. 73, 169–179 (2004)

    Article  Google Scholar 

  • Üstün, B., Melssen, W.J., Buydens, L.M.C.: Facilitating the application of support vector regression by using a universal pearson VII function based Kernel. Chemomet. Intell. Lab. Syst. 81, 29–40 (2006)

    Article  Google Scholar 

  • Üstün, B., Melssen, W.J., Buydens, L.M.C.: Visualisation and interpretation of support vector regression models. Anal. Chim. Acta. 595, 299–309 (2007)

    Article  Google Scholar 

  • Vapnik, V.: The Nature of Statistical Learning Theory. Springer Verlag, New York (1995)

    MATH  Google Scholar 

  • Vapnik, V.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

  • Vapnik, V., Lerner, A.: Pattern recognition using generalized portrait method. Automat. Rem. Contr. 24, 774–780 (1963)

    Google Scholar 

  • Wang, C.-H., Zhong, Z.-P., Li, R., J-Q, E.: Prediction of jet penetration depth based on least square support vector machine. Powder Technol. 203, 404–411 (2010)

    Article  Google Scholar 

  • Xi, X.-C., Poo, A.-N., Chou, S.-K.: Support vector regression model predictive control on a HVAC plant. Contr. Eng. Prac. 15, 897–908 (2007)

    Article  Google Scholar 

  • Yeh, C.Y., Su, W.P., Lee, S.J.: Employing multiple-kernel support vector machines for counterfeit Banknote recognition. Appl. Soft Comput. J. 11, 1439–1447 (2011)

    Article  Google Scholar 

  • Zeng, L.: Prediction and classification with neural network models. Soc. Method. Res. 27, 499–524 (1999)

    Article  Google Scholar 

  • Zhang, J., Sato, T., Iai, S.: Support vector regression for on-line health monitoring of large-scale structures. Struct. Saf. 28, 392–406 (2006)

    Article  Google Scholar 

  • Zhou, Y.-P., Jiang, J.-H., Lin, W.-Q., Zou, H.-Y., Wu, H.-L., Shen, G.-L., Yu, R.-Q.: Boosting support vector regression in QSAR studies of bioactivities of chemical compounds. Eur. J. Pharm. Sci. 28, 344–353 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tshilidzi Marwala .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Marwala, T., Lagazio, M. (2011). Support Vector Machines for Modeling Interstate Conflict. In: Militarized Conflict Modeling Using Computational Intelligence. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-0-85729-790-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-790-7_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-789-1

  • Online ISBN: 978-0-85729-790-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics