Automatic Relevance Determination for Identifying Interstate Conflict

  • Tshilidzi Marwala
  • Monica Lagazio
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


This chapter introduces the Bayesian and the evidence frameworks to construct an automatic relevance determination method. These techniques are described in detail, relevant literature reviews were conducted and their use is justified. The automatic relevance determination technique was then applied to determine the relevance of interstate variables that are essential for modeling interstate conflict. Conclusions are drawn and explained within the context of political science.


Conjugate Gradient Method Hide Unit Network Weight Economic Interdependence Bayesian Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anonymous.: Correlates of war project. (2010). Accessed 20 Sept 2010
  2. Babaie-Kafaki, S., Ghanbari, R., Mahdavi-Amiri, N.: Two new conjugate gradient methods based on modified secant equations. J. Comput. Appl. Math. 234, 1374–1386 (2010)MathSciNetMATHCrossRefGoogle Scholar
  3. Barton, D.N., Saloranta, T., Moe, S.J., Eggestad, H.O., Kuikka, S.: Bayesian belief networks as a meta-modelling tool in integrated river basin management – pros and cons in evaluating nutrient abatement decisions under uncertainty in a Norwegian River Basin. Ecol. Econ. 66, 91–104 (2008)CrossRefGoogle Scholar
  4. Beck, N., King, G., Zeng, L.: Improving quantitative studies of international conflict: a conjecture. Am. Polit. Sci. Rev 94, 21–35 (2000)CrossRefGoogle Scholar
  5. Bernardo, J.M.: Reference posterior distributions for Bayesian inference. J. R. Stat. Soc. 41, 113–147 (1979)MathSciNetMATHGoogle Scholar
  6. Bernardo, J.M.: Reference analysis. Handb. Stat. 25, 17–90 (2005)MathSciNetCrossRefGoogle Scholar
  7. Bertsekas, D.P.: Non-linear Programming. Athenas Scientific, Cambridge (1995)Google Scholar
  8. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)Google Scholar
  9. Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis. Wiley, Hoboken (1973)MATHGoogle Scholar
  10. Browne, A.: Using neural networks with automatic relevance determination to identify regions of the thalamus implicated in Schizophrenia. In: Proceedings of the IEEE International Joint Conference on Neural Networks. pp. 97–101, Vancouver (2006)Google Scholar
  11. Bryson, A.E., Ho, Y.C.: Applied Optimal Control: Optimization, Estimation, and Control. Xerox College Publishing, Kentucky (1989)Google Scholar
  12. Chiddarwar, S.S., Babu, N.R.: Comparison of RBF and MLP neural networks to solve inverse kinematic problems for 6R serial robots by a fusion approach. Eng. Appl. Artif. Intel 23, 1083–1092 (2010)CrossRefGoogle Scholar
  13. Cybenko, G.: Approximations by superpositions of sigmoidal functions. Math.Control. Signal. Syst 2, 303–314 (1989)MathSciNetMATHCrossRefGoogle Scholar
  14. Ebrahimzadeh, A., Khazaee, A.: Detection of premature ventricular contractions using mlp neural networks: a comparative study. Measurement 43, 103–112 (2010)CrossRefGoogle Scholar
  15. Edwards, A.W.F.: Likelihood. Cambridge University Press, Cambridge (1972)MATHGoogle Scholar
  16. Fienberg, S.E.: When did Bayesian inference become “Bayesian”? Bayesian. Anal 1, 1–40 (2006)MathSciNetCrossRefGoogle Scholar
  17. Fletcher, R.: Practical Methods of Optimization. Wiley, New York (1987)MATHGoogle Scholar
  18. Freeman, J., Skapura, D.: Neural Networks: Algorithms, Applications and Programming Techniques. Addison-Wesley, Reading (1991)MATHGoogle Scholar
  19. Fu, Y., Browne, A.: Using ensembles of neural networks to improve automatic relevance determination. In: Proceeding of the IEEE International Joint Conference on Neural Networks, pp. 1590–1594, Orlando (2007)Google Scholar
  20. Gelpi, C., Griesdorf, M.: Winners and losers? Democracies in international crisis, 1918–94. Am. Polit. Sci. Rev 95, 633–647 (2001)CrossRefGoogle Scholar
  21. Ghate, V.N., Dudul, S.V.: Optimal MLP neural network classifier for fault detection of three phase induction motor. Expert Syst. Appl. 37, 3468–3481 (2010)CrossRefGoogle Scholar
  22. Gleditsch, K.S., Wards, M.D.: Peace and war in time and space: the role of democratization. Int. Stud. Q. 43, 1–29 (2000)CrossRefGoogle Scholar
  23. Gochman, C., Maoz, Z.: Militarized interstate disputes 1816–1976. In: Singer, D., Diehl, P. (eds.) Measuring the Correlates of War. University of Michigan Press, Ann Arbor (1990)Google Scholar
  24. Habtemariam, E., Marwala, T., Lagazio, M.: Artificial intelligence for conflict management. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 2583–2588, Montreal (2005)Google Scholar
  25. Hassoun, M.H.: Fundamentals of Artificial Neural Networks. MIT Press, Cambridge (1995)MATHGoogle Scholar
  26. Haykin, S.: Neural Networks. Prentice-Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  27. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand 6, 409–436 (1952)MathSciNetGoogle Scholar
  28. Jaynes, E.T.: Prior probabilities. IEEE Trans. Syst. Sci. Cyb. 4, 227–241 (1968)CrossRefGoogle Scholar
  29. Kelly, D.L., Smith, C.L.: Bayesian inference in probabilistic risk assessment – the current state of the art. Reliab. Eng. Syst. Saf. 94, 628–643 (2009)CrossRefGoogle Scholar
  30. Kim, G., Kim, Y., Lim, H., Kim, H.: An MLP-based feature subset selection for HIV-1 protease cleavage site analysis. Artif. Intell. Med. 48, 83–89 (2010)CrossRefGoogle Scholar
  31. Lagazio, M., Marwala, T.: Assessing different bayesian neural network models for militarized interstate dispute. Soc. Sci. Comput. Rev. 24, 1–12 (2005)Google Scholar
  32. Lagazio, M., Russet, B.: A neural network analysis of MIDs, 1885–1992: are the patterns stable? In: Diehl, P. (ed.) Toward a Scientific Understanding of War: Studies in Honor of J. David Singer. University of Michigan Press, Ann Arbor (2002)Google Scholar
  33. Lazkano, E., Sierra, B., Astigarraga, A., Martínez-Otzeta, J.M.: On the use of Bayesian networks to develop behaviours for mobile robots. Robot. Auton. Syst. 55, 253–265 (2007)CrossRefGoogle Scholar
  34. Lee, P.M.: Bayesian Statistics, an Introduction. Wiley, Hoboken (2004)MATHGoogle Scholar
  35. Leke, B., Marwala, T., Tettey, T.: Using inverse neural network for HIV adaptive control. Int. J. Comput. Intell. Res. 3, 11–15 (2007)Google Scholar
  36. Lisboa, P.J.G., Etchells, T.A., Jarman, I.H., Arsene, C.T.C., Aung, M.S.H., Eleuteri, A., Taktak, A.F.G., Ambrogi, F., Boracchi, P., Biganzoli, E.: Partial logistic artificial neural network for competing risks regularized with automatic relevance determination. IEEE Trans. Neural. Nets 20, 1403–1416 (2009)CrossRefGoogle Scholar
  37. Luenberger, D.G.: Linear and Non-linear Programming. Addison-Wesley, Reading (1984)Google Scholar
  38. Lunga, D., Marwala, T.: On-line forecasting of stock market movement direction using the improved incremental algorithm. Lecture Notes in Computer Science, vol. 4234, pp. 440–449, Springer Heidelberg (2006)Google Scholar
  39. MacKay, D.J.C.: Bayesian methods for adaptive models. PhD thesis, California Institute of Technology (1991)Google Scholar
  40. MacKay, D.J.C.: A practical Bayesian framework for back propagation networks. Neural Comput. 4, 448–472 (1992)CrossRefGoogle Scholar
  41. Marwala, T.: On damage identification using a committee of neural networks. J. Eng. Mech. 126, 43–50 (2000)CrossRefGoogle Scholar
  42. Marwala, T.: Probabilistic fault identification using a committee of neural networks and vibration data. J. Aircraft 38, 138–146 (2001)CrossRefGoogle Scholar
  43. Marwala, T.: Fault classification using pseudo modal energies and neural networks. Am. Inst. Aeronaut. Astronaut. J. 41, 82–89 (2003)Google Scholar
  44. Marwala, T.: Computational Intelligence for Missing Data Imputation, Estimation and Management: Knowledge Optimization Techniques. IGI Global Publications, New York (2009)CrossRefGoogle Scholar
  45. Marwala, T.: Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics. Springer, Heidelberg (2010)MATHCrossRefGoogle Scholar
  46. Marwala, T., Hunt, H.E.M.: Fault identification using finite element models and neural networks. Mech. Syst. Signal. Process 13, 475–490 (1999)CrossRefGoogle Scholar
  47. Marwala, T., Lagazio, M.: Modelling and controlling interstate conflict. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1233–1238, Budapest (2004)Google Scholar
  48. Marwala, T., Sibisi, S.: Finite element model updating using bayesian framework and modal properties. J. Aircraft 42, 275–278 (2005)CrossRefGoogle Scholar
  49. Mohamed, N., Rubin, D., Marwala, T.: Detection of epileptiform activity in human EEG signals using bayesian neural networks. Neural Info. Process Lett. Rev. 10, 1–10 (2006)Google Scholar
  50. Møller, A.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Nets 6, 525–533 (1993)CrossRefGoogle Scholar
  51. Mordecai, A.: Non-linear Programming: Analysis and Methods. Dover Publishing, New York (2003)Google Scholar
  52. Neal, R.M.: Bayesian learning for neural networks. PhD thesis, University of Toronto (1994)Google Scholar
  53. Neal, R.M.: Assessing the relevance determination methods using DELVE. In: Bishop, C.M. (ed.) Neural Nets and Machine Learn. Springer, Berlin (1998)Google Scholar
  54. Nummenmaa, A., Auranen, T., Hämäläinen, M.S., Jääskeläinen, I.P., Sams, M., Vehtari, A., Lampinen, J.: Automatic relevance determination based hierarchical Bayesian MEG inversion in practice. NeuroImage 37, 876–889 (2007)CrossRefGoogle Scholar
  55. Oneal, J.R., Russett, B.: Clear and clean: the fixed effects of democracy and economic interdependence. Int. Organ 3, 469–486 (2001)CrossRefGoogle Scholar
  56. Patel, P., Marwala, T.: Neural networks, fuzzy inference systems and adaptive-neuro fuzzy inference systems for financial decision making. Lecture Notes in Computer Science, vol. 4234, pp. 430–439, Springer Heidelberg (2006)Google Scholar
  57. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)MathSciNetMATHCrossRefGoogle Scholar
  58. Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan, Washington, DC (1961)Google Scholar
  59. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge (1986)Google Scholar
  60. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs (1995)MATHGoogle Scholar
  61. Sahin, F., Yavuz, M.Ç., Arnavut, Z., Uluyol, Ö.: Fault diagnosis for airplane engines using Bayesian networks and distributed particle swarm optimization. Parallel Comput. 33, 124–143 (2007)MathSciNetCrossRefGoogle Scholar
  62. Smyrnakis, M.G., Evans, D.J.: Classifying ischemic events using a Bayesian inference multilayer perceptron and input variable evaluation using automatic relevance determination. Comput. Cardiol. 34, 305–308 (2007)CrossRefGoogle Scholar
  63. Stigler, S.M.: The History of Statistics. Harvard University Press, Cambridge (1986)MATHGoogle Scholar
  64. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 58, 267–288 (1996)MathSciNetMATHGoogle Scholar
  65. Ulusoy, I., Bishop, C.M.: Automatic relevance determination for the estimation of relevant features for object recognition. In: Proceedings of the IEEE 14th Signal Processing and Communication Applications, pp. 1–4, Antalya (2006)Google Scholar
  66. Uusitalo, L.: Advantages and challenges of Bayesian networks in environmental modelling. Ecol. Model. 203, 312–318 (2007)CrossRefGoogle Scholar
  67. Van Calster, B., Timmerman, D., Nabney, I.T., Valentin, L., Van Holsbeke, C., Van Huffel, S.: Classifying ovarian tumors using Bayesian multi-layer perceptrons and automatic relevance determination: a multi-center study. In: Proceedings of the Engineering in Medicine and Biology Society, pp. 5342–5345, New York (2006)Google Scholar
  68. Vilakazi, B.C., Marwala, T.: Condition monitoring using computational intelligence. In: Laha, D., Mandal, P. (eds.) Handbook on Computational Intelligence in Manufacturing and Production Management, illustrated edn. IGI Publishers, New York (2007)Google Scholar
  69. Wang, D., Lu, W.Z.: Interval estimation of urban ozone level and selection of influential factors by employing automatic relevance determination. Model. Chemosphere 62, 1600–1611 (2006)Google Scholar
  70. Werbos, P.J.: Beyond regression: new tool for prediction and analysis in the behavioral sciences. Ph.D. thesis, Harvard University (1974)Google Scholar
  71. Wu, W., Chen, Z., Gao, S., Brown, E.N.: Hierarchical Bayesian modeling of inter-trial variability and variational Bayesian learning of common spatial patterns from multichannel EEG. In: Proceedings of the 2010 IEEE International Conference on Acoustics Speech and Signal Processing, pp. 501–504, Montreal (2010)Google Scholar
  72. Yoon, Y., Peterson, L.L.: Artificial neural networks: An emerging new technique. In: Proceedings of the ACM SIGBDP Conference on Trends and Directions in Expert Systems, pp. 417–422, Orlando (1990)Google Scholar
  73. Zeng, L.: Prediction and classification with neural network models. Soc. Method Res. 27, 499–524 (1999)CrossRefGoogle Scholar
  74. Zhang, J., Liu, S., Wang, Y.: Gene association study with SVM, MLP, and cross-validation for the diagnosis of diseases. Prog. Nat. Sci. 18, 741–750 (2008)MathSciNetCrossRefGoogle Scholar
  75. Zhao, Z., Xin, H., Ren, Y., Guo, X.: Application and comparison of BP neural network algorithm in MATLAB. In: Proceedings of the International Conference on Measurement Technology and Mechatron Automat, pp. 590–593, New York (2010)Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.University of JohannesburgJohannesburgSouth Africa

Personalised recommendations