Genetic Algorithm with Optimized Rough Sets for Modeling Interstate Conflict

  • Tshilidzi Marwala
  • Monica Lagazio
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


This chapter presents methods to optimally granulize rough set partition sizes using a genetic algorithm. The procedure is applied to model the militarized interstate dispute data. The procedure is then compared to the rough set partition method that was based on simulated annealing. The results obtained showed that, for the data being analyzed, a genetic algorithm provides higher forecasting accuracy than does the process of simulated annealing.


Genetic Algorithm Particle Swarm Optimization Simulated Annealing Hill Climbing Bayesian Neural Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akula, V.R., Ganguli, R.: Finite element model updating for helicopter rotor blade using genetic algorithm. AIAA J. (2003). doi:doi:10.2514/2.1983Google Scholar
  2. Almeida, F.S., Awruch, A.M.: Design optimization of composite laminated structures using genetic algorithms and finite element analysis. Compos. Struct. 88, 443–454 (2009)CrossRefGoogle Scholar
  3. Arifovic, J., Gençay, R.: Using genetic algorithms to select architecture of a feedforward artificial neural network. Phys. Stat. Mech. Appl. 289, 574–594 (2001)MATHCrossRefGoogle Scholar
  4. Arostegui Jr., M.A., Kadipasaoglu, S.N., Khumawala, B.M.: An empirical comparison of tabu search, simulated annealing, and genetic algorithms for facilities location problems. Int. J. Prod. Econ. 103, 742–754 (2006)CrossRefGoogle Scholar
  5. Balamurugan, R., Ramakrishnan, C.V., Singh, N.: Performance evaluation of a two stage adaptive genetic algorithm (TSAGA) in structural topology optimization. Appl. Soft Comput. 8, 1607–1624 (2008)CrossRefGoogle Scholar
  6. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic programming-an introduction: On the automatic evolution of computer programs and its applications. Morgan Kaufmann, San Fransisco (1998)MATHGoogle Scholar
  7. Boesack, CD., Marwala, T., Nelwamondo, FV.: Application of GA-Fuzzy controller design to automatic generation control. In: Proceedings of the IEEE 3rd International Workshop on Advanced Computer Intelligence, pp. 227–232 (2010)Google Scholar
  8. Bourouni, K., Ben M'Barek, T., Al Taee, A.: Design and optimization of desalination reverse osmosis plants driven by renewable energies using genetic algorithms. Renew. Energ. 36, 936–950 (2011)CrossRefGoogle Scholar
  9. Canyurt, O.E., Kim, H.R., Lee, K.Y.: Estimation of laser hybrid welded joint strength by using genetic algorithm approach. Mech. Mater. 40, 825–831 (2008)CrossRefGoogle Scholar
  10. Chen, R., Zhang, Z., Wu, D., Zhang, P., Zhang, X., Wang, Y., Shi, Y.: Prediction of protein interaction hot spots using rough set-based multiple criteria linear programming. J Theor. Biol 269, 174–180 (2011)CrossRefGoogle Scholar
  11. Crossingham, B.: Rough set partitioning using computational intelligence approach. M.Sc. thesis, University of the Witwatersrand (2007)Google Scholar
  12. Crossingham, B., Marwala, T.: Using genetic algorithms to optimise rough set partition sizes for HIV data analysis. Studies in Comput Intelli 78, 245–250 (2008)CrossRefGoogle Scholar
  13. Crossingham, B., Marwala, T., Lagazio, M.: Optimized rough sets for modelling interstate conflict. In: Proceedings of the IEEE Internatianal Conference on Man, Systems and Cybernatics, pp. 1198–1204 (2008)Google Scholar
  14. Degertekin, S.O.: A comparison of simulated annealing and genetic algorithm for optimum design of nonlinear steel space frames. Struct. Multidisc. Optim 34, 347–59 (2007)CrossRefGoogle Scholar
  15. Forrest, S.: Genetic algorithms. ACM Comput. Surv. 28, 77–80 (1996)CrossRefGoogle Scholar
  16. Franconi, L., Jennison, C.: Comparison of a genetic algorithm and simulated annealing in an application to statistical image reconstruction. Stats. and Comput. 7, 193–207 (1997)CrossRefGoogle Scholar
  17. Franulović, M., Basan, R., Prebil, I.: Genetic algorithm in material model parameters’ identification for low-cycle fatigue. Comput. Mater. Sci. 45, 505–510 (2009)CrossRefGoogle Scholar
  18. Garson, G.D.: A comparison of neural network and expert systems algorithms with common multivariate procedures for analysis of social science data. Soc. Sci. Comp. Rev 9, 399–433 (1991)CrossRefGoogle Scholar
  19. Ghosh, S., Ghosh, I., Pratihar, D.K., Maiti, B., Das, P.K.: Optimum stacking pattern for multi-stream plate-fin heat exchanger through a genetic algorithm. Int. J Therm. Sci. 50, 214–224 (2011)CrossRefGoogle Scholar
  20. Gladwin, D., Stewart, P., Stewart, J.: Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/Multiobjective genetic algorithms. Int. J. Syst. Sci. 42, 249–261 (2011)MATHCrossRefGoogle Scholar
  21. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)MATHGoogle Scholar
  22. Grzymala-Busse, J.W.: Mining numerical data - A rough set approach. In: Proceedings of the Rough Sets and Emerging Intelligence Systems Paradigms, pp. 12–21 (2007)Google Scholar
  23. Gwiazda, T.D.: Genetic Algorithms Reference Vol. 1 Cross-over for Single-objective Numerical Optimization Problems. Adobe eBook, Lomianki (2006)Google Scholar
  24. Hlalele, N., Nelwamondo, F.V., Marwala, T.: Imputation of missing data using PCA, neuro-fuzzy and genetic algorithms. Lect. Notes Comput. Sc. 5507, 485–492 (2009)CrossRefGoogle Scholar
  25. Houck, C.R., Joines, J.A., Kay, M.G.:A genetic algorithm for function optimisation: a MATLAB implementation. (Tech. Rep. NCSU-IE TR 95–09). North, Carolina State: University (1995)Google Scholar
  26. Hulley, G., Marwala, T.: Genetic algorithm based incremental learning for optimal weight and classifier selection. Comput. Models for Life. Sci. 952, 258–267 (2007)Google Scholar
  27. Jaafar, A.F.B, Jais, J., Hamid, MHBHA, Rahman Z.B.A., Benaouda, D.: Using rough set as a tool for knowledge discovery in DSS. Current Trends in Technology-Assisted Education, pp. 1011–1015 (2006)Google Scholar
  28. Jonathan, D., Bruno, D., Hamid, B.A.: Simulated Annealing and genetic algorithms in topology optimization tools: comparison through the design of a switched reluctance machine. In: Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 1247–1252 (2010)Google Scholar
  29. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: A rough set perspective on data and knowledge. In: Kloesgen, W., Zytkow, J. (eds.) The Handbook of Data Mining and Knowledge Discovery. Oxford University Press, Oxford (1999)Google Scholar
  30. Kubalík, J., Lazanský, J.: Genetic algorithms and their testing. AIP Conf. Proc. 465, 217–229 (1999)Google Scholar
  31. Kwak, H.G., Kim, J.: An integrated genetic algorithm complemented with direct search for optimum design of RC frames. Comput.-Aided Des. 41, 490–500 (2009)CrossRefGoogle Scholar
  32. Marwala, T.: Finite element updating using wavelet data and genetic algorithm. J. of Aircraft 39, 709–711 (2002)CrossRefGoogle Scholar
  33. Marwala, T.: Control of fermentation orocess using bayesian neural networks and genetic algorithm. In: Proceedings of the African Control Conference, pp. 449–454 (2003)Google Scholar
  34. Marwala, T.: Control of complex systems using bayesian neural networks and genetic algorithm. Int. J. Eng. Sim. 5, 28–37 (2004)Google Scholar
  35. Marwala, T.: Computational Intelligence for Modelling Complex Systems. Research India Publications, Delhi (2007a)Google Scholar
  36. Marwala, T.: Bayesian training of neural network using genetic programming. Pattern Recogn. Lett. 28, 452–1458 (2007b)CrossRefGoogle Scholar
  37. Marwala, T.: Finite Element Model Updating Using Computational Intelligence Techniques. Springer, London (2010)MATHCrossRefGoogle Scholar
  38. Marwala, T., Chakraverty, S.: Fault classification in structures with incomplete measured data using autoassociative neural networks and genetic algorithm. Curr. Sci. 90, 542–548 (2006)Google Scholar
  39. Marwala, T., de Wilde, P., Correia, L., Mariano, P., Ribeiro, R., Abramov, V., Szirbik, N., Goossenaerts, J.: Scalability and optimisation of a committee of agents using genetic algorithm. In: Proceedings of the International Symposia on Soft Computer and Intelligence Syst for Industry (2001)Google Scholar
  40. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York (1996)MATHGoogle Scholar
  41. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)Google Scholar
  42. Mohamed, A.K., Nelwamondo, F.V., Marwala, T.: Estimation of missing data: Neural networks, principal component analysis and genetic algorithms. In: Proceedings of the 12th World Multi-conf on systemics, Cybernatics and Informatics, pp. 36–41 (2008)Google Scholar
  43. Mohamed, S., Tettey, T., Marwala, T.: An Extension neural network and genetic algorithm for bearing fault classification. In: Proceedings of the IEEE International Joint Conference on Neural Nets, pp. 7673–7679 (2006)Google Scholar
  44. Oh, S., Pedrycz, W.: Genetic optimization-drivenmMulti-layer hybrid fuzzy neural networks. Simul. Model. Pract. Th. 14, 597–613 (2006)CrossRefGoogle Scholar
  45. Onieva, E., Naranjo, J.E., Milanés, V., Alonso, J., García, R., Pérez, J.: Automatic lateral control for unmanned vehicles via genetic algorithms. Appl. Soft Comput. J. 11, 1303–9 (2011)CrossRefGoogle Scholar
  46. Ozcelik, F., Islier, A.A.: Generalisation of unidirectional loop layout problem and solution by a genetic algorithm. Int. J. Prod. Res. 49, 747–764 (2011)CrossRefGoogle Scholar
  47. Palaniappan, P.K., Jawahar, N.: A genetic algorithm for simultaneous optimisation of lot sizing and scheduling in a flow line assembly. Int. J. Prod. Res. 49, 375–400 (2011)MATHCrossRefGoogle Scholar
  48. Paluch, B., Grédiac, M., Faye, A.: Combining a finite element programme and a genetic algorithm to optimize composite structures with variable thickness. Compos. Struct. 83, 284–294 (2008)CrossRefGoogle Scholar
  49. Park, B.J., Choi, H.R., Kim, H.S.: A hybrid genetic algorithm for the job shop scheduling problems. Comput. Ind. Eng. 45, 597–613 (2003)CrossRefGoogle Scholar
  50. Pasandideh, S.H.R., Niaki, S.T.A., Nia, A.R.: A genetic algorithm for vendor managed inventory control system of multi-product multi-constraint economic order quantity model. Expert Syst. Appl. 38, 2708–2716 (2011)CrossRefGoogle Scholar
  51. Patel, P., Marwala, T.: Caller interaction classification: A comparison of real and binary coded GA-MLP techniques. Lect. Notes Comput. Sc. 5507, 728–735 (2009)CrossRefGoogle Scholar
  52. Pawlak, Z.: Rough Sets, Theoretical Aspects of Reasoning About Data. Kluwer, Dordrecht (1991)MATHGoogle Scholar
  53. Pendharkar, P.C., Rodger, J.A.: An empirical study of non-binary genetic algorithm-based neural approaches for classification. In: Proceedings of the 20th International Conference on Information Systems, pp. 155–165 (1999)Google Scholar
  54. Perera, R., Ruiz, A.: A multistage FE updating procedure for damage identification in large-scale structures based on multi-objective evolutionary optimization. Mech. Syst. Signal Pr. 22, 970–991 (2008)CrossRefGoogle Scholar
  55. Perera, R., Ruiz, A., Manzano, C.: Performance assessment of multi-criteria damage identification genetic algorithms. Comput. Struct. 87, 120–127 (2009)CrossRefGoogle Scholar
  56. Rahmani, S., Mousavi, S.M., Kamali, M.J.: Modeling of road-traffic noise with the use of genetic algorithm. Appl. Soft Comput. J. 11, 1008–1013 (2011)CrossRefGoogle Scholar
  57. Roy, T., Chakraborty, D.: Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm. J. Sound Vib. 319, 15–40 (2009)CrossRefGoogle Scholar
  58. Salamó, M., López-Sánchez, M.: Rough set based approaches to feature selection for case-based reasoning classifiers. Pattern Recogn. Lett. 32, 280–292 (2011)CrossRefGoogle Scholar
  59. Stern, H., Chassidim, Y., Zofi, M.: Multi-agent visual area coverage using a new genetic algorithm selection scheme. Eur. J. Oper. Res. 175, 1890–1907 (2006)MATHCrossRefGoogle Scholar
  60. Tettey, T., Marwala, T.: Controlling interstate conflict using neuro-fuzzy modeling and genetic algorithms. In: Proceedings of the 10th IEEE International Conference on Intelligence Engineering Systems, pp. 30–44 (2006)Google Scholar
  61. Thompson, D.R., Bilbro, G.L.: Comparison of a genetic algorithm with a simulated annealing algorithm for the design of an ATM network. IEEE Commun. Lett. 4, 267–269 (2000)CrossRefGoogle Scholar
  62. Tu, Z., Lu, Y.: Finite element model updating using artificial boundary conditions with genetic algorithms. Comput. Struct. 86, 714–727 (2008)CrossRefGoogle Scholar
  63. Vilakazi, C.B. Marwala, T.: Bushing fault detection and diagnosis using extension neural network. In: Proceedings of the 10th IEEE International Conference on Intelligence Engineering Systems, pp. 170–174 (2006)Google Scholar
  64. Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge (1999)MATHGoogle Scholar
  65. Wan, C.: Efficiency comparison of simulated annealing algorithm and genetic algorithm in feature selection. In: Proceedings of the 6th International Conference on Natural Computation, pp. 2330–2333 (2010)Google Scholar
  66. Xie, F., Lin, Y., Ren, W.: Optimizing model for land use/land cover retrieval from remote sensing imagery based on variable precision rough sets. Ecol. Model. 222, 232–240 (2011)CrossRefGoogle Scholar
  67. Zhang, H., Ishikawa, M.: A solution to combinatorial optimization with time-varying parameters by a hybrid genetic algorithm. Int. Congr. Ser. 1269, 149–152 (2004)CrossRefGoogle Scholar
  68. Zou, Z., Tseng, T.-L., Sohn, H., Song, G., Gutierrez, R.: A rough set based approach to distributor selection in supply chain management. Expert Syst. Appl. 38, 106–115 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.University of JohannesburgJohannesburgSouth Africa

Personalised recommendations