Skip to main content

Toxicity of Bone-Targeted Agents in Malignancy

  • Chapter
  • First Online:
Side Effects of Medical Cancer Therapy

Abstract

The bisphosphonates have been in clinical use for three decades. During this time, the adverse event profile and favorable risk-benefit ratio have become clearly defined, and strategies have been identified for minimizing the impact of these side effects on patients. More recently, denosumab has been incorporated into clinical practice and so far demonstrated mild and treatable side effects, although long-term data are lacking.

In this chapter, we review the side effects of the four ­bisphosphonates licensed for use in malignancy, including clodronate, ibandronate, pamidronate, and zoledronic acid, as well as the new targeted agent denosumab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coleman RE. Skeletal complications of malignancy. Cancer. 1997;80(8 Suppl):1588–94 [Review].

    PubMed  CAS  Google Scholar 

  2. Coleman RE. Bisphosphonates in breast cancer. Ann Oncol. 2005;16(5):687–95.

    PubMed  CAS  Google Scholar 

  3. Kristensen B, Ejlertsen B, Groenvold M, Hein S, Loft H, Mouridsen HT. Oral clodronate in breast cancer patients with bone metastases: a randomized study. J Intern Med. 1999;246(1):67–74.

    PubMed  CAS  Google Scholar 

  4. Tubiana-Hulin M, Beuzeboc P, Mauriac L, Barbet N, Frenay M, Monnier A, et al. Double-blinded controlled study comparing clodronate versus placebo in patients with breast cancer bone metastases. Bull Cancer. 2001;88(7):701–7.

    PubMed  CAS  Google Scholar 

  5. Powles T, Paterson S, Kanis JA, McCloskey E, Ashley S, Tidy A, et al. Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer. J Clin Oncol. 2002;20(15):3219–24.

    PubMed  CAS  Google Scholar 

  6. Body JJ, Diel IJ, Lichinitzer M, Lazarev A, Pecherstorfer M, Bell R, et al. Oral ibandronate reduces the risk of skeletal complications in breast cancer patients with metastatic bone disease: results from two randomised, placebo-controlled phase III studies. Br J Cancer. 2004;90(6):1133–7.

    PubMed  CAS  Google Scholar 

  7. Elomaa I, Kylmala T, Tammela T, Viitanen J, Ottelin J, Ruutu M, et al. Effect of oral clodronate on bone pain. A controlled study in patients with metastic prostatic cancer. Int Urol Nephrol. 1992;24(2):159–66.

    PubMed  CAS  Google Scholar 

  8. McCloskey EV, MacLennan IC, Drayson MT, Chapman C, Dunn J, Kanis JA. A randomized trial of the effect of clodronate on skeletal morbidity in multiple myeloma. MRC Working Party on Leukaemia in Adults. Br J Haematol. 1998;100(2):317–25.

    PubMed  CAS  Google Scholar 

  9. Lahtinen R, Laakso M, Palva I, Virkkunen P, Elomaa I. Randomised, placebo-controlled multicentre trial of clodronate in multiple myeloma. Finnish Leukaemia Group. Lancet. 1992;340(8827):1049–52.

    PubMed  CAS  Google Scholar 

  10. Paterson AH, Powles TJ, Kanis JA, McCloskey E, Hanson J, Ashley S. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol. 1993;11(1):59–65.

    PubMed  CAS  Google Scholar 

  11. Diel IJ, Solomayer EF, Costa SD, Gollan C, Goerner R, Wallwiener D, et al. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med. 1998;339(6):357–63.

    PubMed  CAS  Google Scholar 

  12. Saarto T, Vehmanen L, Virkkunen P, Blomqvist C. Ten-year ­follow-up of a randomized controlled trial of adjuvant clodronate treatment in node-positive breast cancer patients. Acta Oncol. 2004;43(7):650–6.

    PubMed  CAS  Google Scholar 

  13. Dearnaley DP, Sydes MR, Mason MD, Stott M, Powell CS, Robinson AC, et al. A double-blind, placebo-controlled, randomized trial of oral sodium clodronate for metastatic prostate cancer (MRC PR05 Trial). J Natl Cancer Inst. 2003;95(17):1300–11.

    PubMed  CAS  Google Scholar 

  14. Mason MD, Sydes MR, Glaholm J, Langley RE, Huddart RA, Sokal M, et al. Oral sodium clodronate for nonmetastatic prostate cancer–results of a randomized double-blind placebo-controlled trial: Medical Research Council PR04 (ISRCTN61384873). J Natl Cancer Inst. 2007;99(10):765–76.

    PubMed  CAS  Google Scholar 

  15. Tripathy D, Lichinitzer M, Lazarev A, MacLachlan SA, Apffelstaedt J, Budde M, et al. Oral ibandronate for the treatment of metastatic bone disease in breast cancer: efficacy and safety results from a randomized, double-blind, placebo-controlled trial. Ann Oncol. 2004;15(5):743–50.

    PubMed  CAS  Google Scholar 

  16. Coleman RE, Purohit OP, Black C, Vinholes JJ, Schlosser K, Huss H, et al. Double-blind, randomised, placebo-controlled, dose-finding study of oral ibandronate in patients with metastatic bone disease. Ann Oncol. 1999;10(3):311–6.

    PubMed  CAS  Google Scholar 

  17. Diel IJ, Body JJ, Lichinitser MR, Kreuser ED, Dornoff W, Gorbunova VA, et al. Improved quality of life after long-term treatment with the bisphosphonate ibandronate in patients with metastatic bone disease due to breast cancer. Eur J Cancer. 2004;40(11):1704–12.

    PubMed  CAS  Google Scholar 

  18. Mancini I, Dumon JC, Body JJ. Efficacy and safety of ibandronate in the treatment of opioid-resistant bone pain associated with metastatic bone disease: a pilot study. J Clin Oncol. 2004;22(17):3587–92.

    PubMed  CAS  Google Scholar 

  19. Heras P, Kritikos K, Hatzopoulos A, Georgopoulou AP. Efficacy of ibandronate for the treatment of skeletal events in patients with metastatic breast cancer. Eur J Cancer Care. 2009;18(6):653–6.

    CAS  Google Scholar 

  20. Clemons M, Dranitsaris G, Ooi W, Cole DE. A Phase II trial evaluating the palliative benefit of second-line oral ibandronate in breast cancer patients with either a skeletal related event (SRE) or progressive bone metastases (BM) despite standard bisphosphonate (BP) therapy. Breast Cancer Res Treat. 2008;108(1):79–85.

    PubMed  CAS  Google Scholar 

  21. Conte PF, Giannessi PG, Latreille J, Mauriac L, Koliren L, Calabresi F, et al. Delayed progression of bone metastases with pamidronate therapy in breast cancer patients: a randomized, multicenter phase III trial. Ann Oncol. 1994;5 Suppl 7:S41–4.

    PubMed  Google Scholar 

  22. Glover D, Lipton A, Keller A, Miller AA, Browning S, Fram RJ, et al. Intravenous pamidronate disodium treatment of bone metastases in patients with breast cancer. A dose-seeking study. Cancer. 1994;74(11):2949–55.

    PubMed  CAS  Google Scholar 

  23. Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med. 1996;334(8):488–93.

    PubMed  CAS  Google Scholar 

  24. Hortobagyi GN, Theriault RL, Porter L, Blayney D, Lipton A, Sinoff C, et al. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N Engl J Med. 1996;335(24):1785–91.

    PubMed  CAS  Google Scholar 

  25. Hultborn R, Gundersen S, Ryden S, Holmberg E, Carstensen J, Wallgren UB, et al. Efficacy of pamidronate in breast cancer with bone metastases: a randomized, double-blind placebo-controlled multicenter study. Anticancer Res. 1999;19(4C):3383–92.

    PubMed  CAS  Google Scholar 

  26. Theriault RL, Lipton A, Hortobagyi GN, Leff R, Gluck S, Stewart JF, et al. Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. J Clin Oncol. 1999;17(3):846–54.

    PubMed  CAS  Google Scholar 

  27. Small EJ, Smith MR, Seaman JJ, Petrone S, Kowalski MO. Combined analysis of two multicenter, randomized, placebo-controlled studies of pamidronate disodium for the palliation of bone pain in men with metastatic prostate cancer. J Clin Oncol. 2003;21(23):4277–84.

    PubMed  CAS  Google Scholar 

  28. Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst. 2002;94(19):1458–68.

    PubMed  CAS  Google Scholar 

  29. Coleman RE, Marshall H, Cameron D, Dodwell D, Burkinshaw R, Keane M, et al. Breast-cancer adjuvant therapy with zoledronic acid. N Engl J Med. 2011;365(15):1396–405.

    PubMed  CAS  Google Scholar 

  30. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809–22.

    PubMed  CAS  Google Scholar 

  31. Gnant M, Mlineritsch B, Luschin-Ebengreuth G, Kainberger F, Kassmann H, Piswanger-Solkner JC, et al. Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 5-year follow-up of the ABCSG-12 bone-­mineral density substudy. Lancet Oncol. 2008;9(9):840–9.

    PubMed  CAS  Google Scholar 

  32. Rosen LS, Gordon D, Tchekmedyian S, Yanagihara R, Hirsh V, Krzakowski M, et al. Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: a phase III, double-blind, randomized trial – the Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group. J Clin Oncol. 2003;21(16):3150–7.

    PubMed  CAS  Google Scholar 

  33. Major PP, Cook RJ, Chen BL, Zheng M. Survival-adjusted multiple-event analysis for the evaluation of treatment effects of zoledronic Acid in patients with bone metastases from solid tumors. Support Cancer Ther. 2005;2(4):234–40.

    PubMed  Google Scholar 

  34. Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res. 1998;13(4):581–9.

    PubMed  CAS  Google Scholar 

  35. Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer. 2000;88(12 Suppl):2961–78.

    PubMed  CAS  Google Scholar 

  36. Brown JE, Ellis SP, Lester JE, Gutcher S, Khanna T, Purohit OP, et al. Prolonged efficacy of a single dose of the bisphosphonate zoledronic acid. Clin Cancer Res. 2007;13(18 Pt 1):5406–10.

    PubMed  CAS  Google Scholar 

  37. Pfister T, Atzpodien E, Bohrmann B, Bauss F. Acute renal effects of intravenous bisphosphonates in the rat. Basic Clin Pharmacol Toxicol. 2005;97(6):374–81.

    PubMed  CAS  Google Scholar 

  38. Pfister T, Atzpodien E, Bauss F. The renal effects of minimally nephrotoxic doses of ibandronate and zoledronate following single and intermittent intravenous administration in rats. Toxicology. 2003;191(2–3):159–67.

    PubMed  CAS  Google Scholar 

  39. Body JJ, Pfister T, Bauss F. Preclinical perspectives on bisphosphonate renal safety. Oncologist. 2005;10 Suppl 1:3–7.

    PubMed  CAS  Google Scholar 

  40. Mastaglia SR, Watman NP, Oliveri B. Intravenous bisphosphonate treatment and pregnancy: its effects on mother and infant bone health. Osteoporos Int. 2010;21(11):1959–62.

    PubMed  CAS  Google Scholar 

  41. Hellmeyer L, Kuhnert M, Ziller V, Schmidt S, Hadji P. The use of i.v. bisphosphonate in pregnancy-associated osteoporosis – case study. Exp Clin Endocrinol Diabetes. 2007;115(2):139–42.

    PubMed  CAS  Google Scholar 

  42. Djokanovic N, Klieger-Grossmann C, Koren G. Does treatment with bisphosphonates endanger the human pregnancy? J Obstet Gynaecol Can. 2008;30(12):1146–8.

    PubMed  Google Scholar 

  43. Levy S, Fayez I, Taguchi N, Han JY, Aiello J, Matsui D, et al. Pregnancy outcome following in utero exposure to bisphosphonates. Bone. 2009;44(3):428–30.

    PubMed  CAS  Google Scholar 

  44. Siminoski K, Fitzgerald AA, Flesch G, Gross MS. Intravenous pamidronate for treatment of reflex sympathetic dystrophy during breast feeding. J Bone Miner Res. 2000;15(10):2052–5.

    PubMed  CAS  Google Scholar 

  45. Reid IR, Gamble GD, Mesenbrink P, Lakatos P, Black DM. Characterization of and risk factors for the acute-phase response after zoledronic acid. J Clin Endocrinol Metab. 2010;95(9):4380–7.

    PubMed  CAS  Google Scholar 

  46. Dicuonzo G, Vincenzi B, Santini D, Avvisati G, Rocci L, Battistoni F, et al. Fever after zoledronic acid administration is due to increase in TNF-alpha and IL-6. J Interferon Cytokine Res. 2003;23(11):649–54.

    PubMed  CAS  Google Scholar 

  47. Sauty A, Pecherstorfer M, Zimmer-Roth I, Fioroni P, Juillerat L, Markert M, et al. Interleukin-6 and tumor necrosis factor alpha levels after bisphosphonates treatment in vitro and in patients with malignancy. Bone. 1996;18(2):133–9.

    PubMed  CAS  Google Scholar 

  48. Rosen LS, Gordon D, Kaminski M, Howell A, Belch A, Mackey J, et al. Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer. 2003;98(8):1735–44.

    PubMed  CAS  Google Scholar 

  49. Body JJ, Lichinitser M, Tjulandin S, Garnero P, Bergstrom B. Oral ibandronate is as active as intravenous zoledronic acid for reducing bone turnover markers in women with breast cancer and bone metastases. Ann Oncol. 2007;18(7):1165–71.

    PubMed  Google Scholar 

  50. Bergstrom B, Lichinitser M, Body JJ. Intravenous and oral ibandronate have better safety and tolerability profiles than zoledronic acid: evidence from comparative phase II/III trials. Bone. 2006;38 suppl 1:S68.

    Google Scholar 

  51. Coleman RE. Risks and benefits of bisphosphonates. Br J Cancer. 2008;98(11):1736–40.

    PubMed  CAS  Google Scholar 

  52. Kohno N, Aogi K, Minami H, Nakamura S, Asaga T, Iino Y, et al. Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol. 2005;23(15):3314–21.

    PubMed  CAS  Google Scholar 

  53. Tanvetyanon T, Stiff PJ. Management of the adverse effects ­associated with intravenous bisphosphonates. Ann Oncol. 2006;17(6):897–907.

    PubMed  CAS  Google Scholar 

  54. Pearce SH, Cheetham TD. Diagnosis and management of vitamin D deficiency. BMJ. 2010;340:b5664.

    PubMed  Google Scholar 

  55. Simmons C, Amir E, Dranitsaris G, Clemons M, Wong B, Veith R, et al. Altered calcium metabolism in patients on long-term bisphosphonate therapy for metastatic breast cancer. Anticancer Res. 2009;29(7):2707–11.

    PubMed  CAS  Google Scholar 

  56. Chennuru S, Koduri J, Baumann MA. Risk factors for symptomatic hypocalcemia complicating treatment with zoledronic acid. Intern Med J. 2008;38(8):635–7.

    PubMed  CAS  Google Scholar 

  57. Markowitz GS, Fine PL, Stack JI, Kunis CL, Radhakrishnan J, Palecki W, et al. Toxic acute tubular necrosis following treatment with zoledronate (Zometa). Kidney Int. 2003;64(1):281–9.

    PubMed  CAS  Google Scholar 

  58. Markowitz GS, Appel GB, Fine PL, Fenves AZ, Loon NR, Jagannath S, et al. Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. J Am Soc Nephrol. 2001;12(6):1164–72.

    PubMed  CAS  Google Scholar 

  59. Desikan R, Veksler Y, Raza S, Stokes B, Sabir T, Li ZJ, et al. Nephrotic proteinuria associated with high-dose pamidronate in multiple myeloma. Br J Haematol. 2002;119(2):496–9.

    PubMed  Google Scholar 

  60. Banerjee D, Asif A, Striker L, Preston RA, Bourgoignie JJ, Roth D. Short-term, high-dose pamidronate-induced acute tubular necrosis: the postulated mechanisms of bisphosphonate nephrotoxicity. Am J Kidney Dis. 2003;41(5):E18.

    PubMed  Google Scholar 

  61. Kunin M, Kopolovic J, Avigdor A, Holtzman EJ. Collapsing glomerulopathy induced by long-term treatment with standard-dose pamidronate in a myeloma patient. Nephrol Dial Transplant. 2004;19(3):723–6.

    PubMed  Google Scholar 

  62. Rosen LS, Gordon D, Tchekmedyian NS, Yanagihara R, Hirsh V, Krzakowski M, et al. Long-term efficacy and safety of zoledronic acid in the treatment of skeletal metastases in patients with nonsmall cell lung carcinoma and other solid tumors: a randomized, phase III, double-blind, placebo-controlled trial. Cancer. 2004;100(12):2613–21.

    PubMed  CAS  Google Scholar 

  63. McDermott RS, Kloth DD, Wang H, Hudes GR, Langer CJ. Impact of zoledronic acid on renal function in patients with cancer: clinical significance and development of a predictive model. J Support Oncol. 2006;4(10):524–9.

    PubMed  CAS  Google Scholar 

  64. Diel IJ, Weide R, Koppler H, Antras L, Smith M, Green J, et al. Risk of renal impairment after treatment with ibandronate versus zoledronic acid: a retrospective medical records review. Support Care Cancer. 2009;17(6):719–25.

    PubMed  Google Scholar 

  65. Weide R, Koppler H, Antras L, Smith M, Chang MP, Green J, et al. Renal toxicity in patients with multiple myeloma receiving zoledronic acid vs. ibandronate: a retrospective medical records review. J Cancer Res Ther. 2010;6(1):31–5.

    PubMed  CAS  Google Scholar 

  66. Rosen LS, Gordon D, Kaminski M, Howell A, Belch A, Mackey J, et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J. 2001;7(5):377–87.

    PubMed  CAS  Google Scholar 

  67. Guarneri V, Donati S, Nicolini M, Giovannelli S, D’Amico R, Conte PF. Renal safety and efficacy of i.v. bisphosphonates in patients with skeletal metastases treated for up to 10 years. Oncologist. 2005;10(10):842–8.

    PubMed  CAS  Google Scholar 

  68. Diel IJ, Bergner R, Grotz KA. Adverse effects of bisphosphonates: current issues. J Support Oncol. 2007;5(10):475–82.

    PubMed  CAS  Google Scholar 

  69. Atula S, Powles T, Paterson A, McCloskey E, Nevalainen J, Kanis J. Extended safety profile of oral clodronate after long-term use in primary breast cancer patients. Drug Saf. 2003;26(9):661–71.

    PubMed  CAS  Google Scholar 

  70. Conte P, Guarneri V. Safety of intravenous and oral bisphosphonates and compliance with dosing regimens. Oncologist. 2004;9 Suppl 4:28–37.

    PubMed  CAS  Google Scholar 

  71. Cardwell CR, Abnet CC, Cantwell MM, Murray LJ. Exposure to oral bisphosphonates and risk of esophageal cancer. JAMA. 2010;304(6):657–63.

    PubMed  CAS  Google Scholar 

  72. Green J, Czanner G, Reeves G, Watson J, Wise L, Beral V. Oral bisphosphonates and risk of cancer of oesophagus, stomach, and colorectum: case–control analysis within a UK primary care cohort. BMJ. 2010;341:c4444.

    PubMed  Google Scholar 

  73. Rennert G, Pinchev M, Rennert HS, Gruber SB. Use of bisphosphonates and reduced risk of colorectal cancer. J Clin Oncol. 2011;29(9):1146–50.

    PubMed  Google Scholar 

  74. Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg. 2003;61(9):1115–7.

    PubMed  Google Scholar 

  75. Migliorati CA. Bisphosphonates and oral cavity avascular bone necrosis. J Clin Oncol. 2003;21(22):4253–4.

    PubMed  Google Scholar 

  76. Khosla S, Burr D, Cauley J, Dempster DW, Ebeling PR, Felsenberg D, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2007;22(10):1479–91.

    PubMed  Google Scholar 

  77. Yamashita J, McCauley LK, Van Poznak C. Updates on osteonecrosis of the jaw. Curr Opin Support Palliat Care. 2010;4(3):200–6.

    PubMed  Google Scholar 

  78. Migliorati CA, Armonis BN, Nicolatou-Galitis O. Oral osteonecrosis associated with the use of ibandronate: report of a case and clinical implications. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(1):e18–21.

    PubMed  Google Scholar 

  79. Lo JC, O’Ryan FS, Gordon NP, Yang J, Hui RL, Martin D, et al. Prevalence of osteonecrosis of the jaw in patients with oral bisphosphonate exposure. J Oral Maxillofac Surg. 2010;68(2):243–53.

    PubMed  Google Scholar 

  80. Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28(35):5132–9.

    PubMed  CAS  Google Scholar 

  81. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29(9):1125–32.

    PubMed  CAS  Google Scholar 

  82. Dimopoulos MA, Kastritis E, Bamia C, Melakopoulos I, Gika D, Roussou M, et al. Reduction of osteonecrosis of the jaw (ONJ) after implementation of preventive measures in patients with multiple myeloma treated with zoledronic acid. Ann Oncol. 2009;20(1):117–20.

    PubMed  CAS  Google Scholar 

  83. Ripamonti CI, Maniezzo M, Campa T, Fagnoni E, Brunelli C, Saibene G, et al. Decreased occurrence of osteonecrosis of the jaw after implementation of dental preventive measures in solid tumour patients with bone metastases treated with bisphosphonates. The experience of the National Cancer Institute of Milan. Ann Oncol. 2009;20(1):137–45.

    PubMed  CAS  Google Scholar 

  84. Loke YK, Jeevanantham V, Singh S. Bisphosphonates and atrial fibrillation: systematic review and meta-analysis. Drug Saf. 2009;32(3):219–28.

    PubMed  CAS  Google Scholar 

  85. Vestergaard P, Schwartz K, Pinholt EM, Rejnmark L, Mosekilde L. Risk of atrial fibrillation associated with use of bisphosphonates and other drugs against osteoporosis: a cohort study. Calcif Tissue Int. 2010;86(5):335–42.

    PubMed  CAS  Google Scholar 

  86. Grosso A, Douglas I, Hingorani A, MacAllister R, Smeeth L. Oral bisphosphonates and risk of atrial fibrillation and flutter in women: a self-controlled case-series safety analysis. PLoS One. 2009;4(3):e4720.

    PubMed  Google Scholar 

  87. Huang WF, Tsai YW, Wen YW, Hsiao FY, Kuo KN, Tsai CR. Osteoporosis treatment and atrial fibrillation: alendronate versus raloxifene. Menopause. 2010;17(1):57–63.

    PubMed  Google Scholar 

  88. Bunch TJ, Anderson JL, May HT, Muhlestein JB, Horne BD, Crandall BG, et al. Relation of bisphosphonate therapies and risk of developing atrial fibrillation. Am J Cardiol. 2009;103(6):824–8.

    PubMed  CAS  Google Scholar 

  89. Bisphosphonates and atrial fibrillation: clinical trial data suggest possible link. Prescrire Int. 2011;20(115):96–7.

    Google Scholar 

  90. Howard PA, Barnes BJ, Vacek JL, Chen W, Lai SM. Impact of bisphosphonates on the risk of atrial fibrillation. Am J Cardiovasc Drugs. 2010;10(6):359–67.

    PubMed  CAS  Google Scholar 

  91. Macarol V, Fraunfelder FT. Pamidronate disodium and possible ocular adverse drug reactions. Am J Ophthalmol. 1994;118(2):220–4.

    PubMed  CAS  Google Scholar 

  92. Fraunfelder FW. Ocular side effects associated with bisphosphonates. Drugs Today (Barc). 2003;39(11):829–35.

    CAS  Google Scholar 

  93. Benderson D, Karakunnel J, Kathuria S, Badros A. Scleritis c­omplicating zoledronic acid infusion. Clin Lymphoma Myeloma. 2006;7(2):145–7.

    PubMed  Google Scholar 

  94. ElSaghir NS, Otrock ZK, Bleik JH. Unilateral anterior uveitis complicating zoledronic acid therapy in breast cancer. BMC Cancer. 2005;5:156.

    Google Scholar 

  95. Colucci A, Modorati G, Miserocchi E, Di Matteo F, Rama P. Anterior uveitis complicating zoledronic acid infusion. Ocul Immunol Inflamm. 2009;17(4):267–8.

    PubMed  Google Scholar 

  96. Fietta P, Manganelli P, Lodigiani L. Clodronate induced uveitis. Ann Rheum Dis. 2003;62(4):378.

    PubMed  CAS  Google Scholar 

  97. Fraunfelder FW, Fraunfelder FT. Bisphosphonates and ocular inflammation. N Engl J Med. 2003;348(12):1187–8.

    PubMed  Google Scholar 

  98. Sharma NS, Ooi JL, Masselos K, Hooper MJ, Francis IC. Zoledronic acid infusion and orbital inflammatory disease. N Engl J Med. 2008;359(13):1410–1.

    PubMed  CAS  Google Scholar 

  99. Tsourdi E, Rachner TD, Gruber M, Hamann C, Ziemssen T, Hofbauer LC. Seizures associated with zoledronic acid for osteoporosis. J Clin Endocrinol Metab. 2011;96(7):1955–9.

    PubMed  CAS  Google Scholar 

  100. Electronic Medicines Compendium. Summary of product characteristics for denosumab. Datapharm Communications Ltd.; 2010. www.emc.medicines.org.uk.

  101. Electronic Medicines Compendium. Summary of product characteristics for zometa 4 mg/100 ml solution. Datapharm Communications Ltd.; 2011. www.emc.medicines.org.uk

  102. Electronic Medicines Compendium. Summary of product characteristics for sodium clodronate. Datapharm Communications Ltd.; 2011. www.emc.medicines.org.uk.

  103. Electronic Medicines Compendium. Summary of product characteristics for pamidronate disodium. Datapharm Communications Ltd.; 2009. www.emc.medicines.org.uk.

  104. Electronic Medicines Compendium. Summary of product characteristics for ibandronic acid. Datapharm Communications Ltd.; 2011. www.emc.medicines.org.uk.

  105. Coleman R, Burkinshaw R, Winter M, Neville-Webbe H, Lester J, Woodward E, et al. Zoledronic acid. Expert Opin Drug Saf. 2011;10(1):133–45.

    PubMed  CAS  Google Scholar 

  106. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76.

    PubMed  CAS  Google Scholar 

  107. Burgess TL, Qian Y, Kaufman S, Ring BD, Van G, Capparelli C, et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol. 1999;145(3):527–38.

    PubMed  CAS  Google Scholar 

  108. Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Yano K, et al. RANK is the essential signalling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun. 1998;253(2):395–400.

    PubMed  CAS  Google Scholar 

  109. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29(2):155–92.

    PubMed  CAS  Google Scholar 

  110. Ellis GK, Bone HG, Chlebowski R, Paul D, Spadafora S, Smith J, et al. Randomised trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol. 2008;26(30):4875–82.

    PubMed  CAS  Google Scholar 

  111. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature. 2006;440(7084):692–6.

    PubMed  CAS  Google Scholar 

  112. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.

    PubMed  CAS  Google Scholar 

  113. Smith MR, Egerdie B, Hernández Toriz N, Feldman R, Tammela TL, Saad F, et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 2009;361(8):745–55.

    PubMed  CAS  Google Scholar 

  114. Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, et al. Denosumab versus zoledronic acid for treatment for bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377:813–22.

    PubMed  CAS  Google Scholar 

  115. Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, et al. A single-dose placebo-controlled study of amg 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res. 2004;19(7):2274–82.

    Google Scholar 

  116. Lipton A, Steger GG, Figueroa J, Alvarado C, Solal-Celigny P, Body JJ, et al. Extended efficacy and safety of denosumab in breast cancer patients with bone metastases not receiving prior bisphosphonate therapy. Clin Cancer Res. 2008;14:6690–6.

    PubMed  CAS  Google Scholar 

  117. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13(18):2412–24.

    PubMed  CAS  Google Scholar 

  118. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte ­development and lymph-node organogenesis. Nature. 1999;397(6717):315–23.

    PubMed  CAS  Google Scholar 

  119. Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 2000;103(1):41–50.

    PubMed  CAS  Google Scholar 

  120. Reid IR, Miller PD, Brown JP, Kendler DL, Fahrleitner-Pammer A, Valter I, et al. Effects of denosumab on bone histomorphometry: the FREEDOM and STAND studies. J Bone Miner Res. 2010;25(10):2256–65.

    PubMed  CAS  Google Scholar 

  121. PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Coleman M.S., B.S., M.D., FRCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Wilson, C., Taylor, F.G., Coleman, R.E. (2013). Toxicity of Bone-Targeted Agents in Malignancy. In: Dicato, M. (eds) Side Effects of Medical Cancer Therapy. Springer, London. https://doi.org/10.1007/978-0-85729-787-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-787-7_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-786-0

  • Online ISBN: 978-0-85729-787-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics