This chapter presents a number of other application areas (which have not been discussed in previous chapters) which can benefit from using PDEs for geometric design. Particularly, in this chapter we show how PDEs can be effectively used for animation, data representation and compression. Furthermore, we discuss an emerging area of research where PDE based geometric design is being related to traditional spline based techniques.


Geometric Design Surface Patch Facial Animation Water Snake Animation Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Castro CG, Ugail H, Willis P, Palmer I (2008) A survey of partial differential equations in geometric design. Vis Comput 24(3):213–225. doi: 10.1007/s00371-007-0190-z CrossRefGoogle Scholar
  2. 2.
    Castro G, Athanasopoulos M, Ugail H (2010) Cyclic animation using partial differential equations. Vis Comput 26(5):325–338. doi: 10.1007/s00371-010-0422-5 CrossRefGoogle Scholar
  3. 3.
    Monterde J, Ugail H (2006) A general 4th-order PDE method to generate Bézier surfaces from the boundary. Comput Aided Geom Des 23(2):208–225. doi: 10.1016/j.cagd.2005.09.001 MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Sheng Y, Willis P, Castro G, Ugail H (2009) PDE-based facial animation: making the complex simple, In: Advances in visual computing, part II. Lecture notes in computer science (LNCS), vol 5359. Springer, Berlin, pp 723–732 CrossRefGoogle Scholar
  5. 5.
    Sheng Y, Sourin S, Gonzalez Castro G, Ugail H (2010) A PDE method for patchwise approximation of large polygon meshes. Vis Comput 26(6–8):975–984. doi: 10.1007/s00371-010-0456-8 CrossRefGoogle Scholar
  6. 6.
    Smith JJ, Kampine JP (1990) Circulatory physiology, the essentials. Williams and Wilkins, Baltimore Google Scholar
  7. 7.
    Ugail H (2003) On the spine of a PDE surface. In: Wilson MJ, Martin RR (eds) Mathematics of surfaces X. Springer, Berlin, pp 366–376 CrossRefGoogle Scholar
  8. 8.
    Ugail H (2004) Spine based shape parameterisation for PDE surfaces. Computing 72:195–206. doi: 10.1007/s00607-003-0057-8 MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Ugail H, Bloor MIG, Wilson MJ (1999) Techniques for interactive design using the PDE method. ACM Trans Graph 18(2):195–212. doi: 10.1145/318009.318078 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.University of BradfordBradfordUK

Personalised recommendations