Introduction to Geometric Design

  • Hassan Ugail


This chapter provides an introduction to geometric design. It introduces various popular mathematical methods used for shape representation in geometric design. It also discusses the role of interactive design and parametric design to enhance the processes involved in a geometric design problem. Furthermore, this chapter discusses the use of design optimization to carry out automatic design for function.


Design Variable Control Point Geometric Design Surface Patch Interactive Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Farouki RT (1999) Closing the gap between CAD model and downstream application. SIAM News 32:5. Google Scholar
  2. 2.
    Lee W (1999) Principles of CAD/CAM/CAE systems. Addison-Wesley, Reading Google Scholar
  3. 3.
    Shapiro V, Voelcker H (1989) On the role of geometry in mechanical design. Res Eng Des 1:63–73 CrossRefGoogle Scholar
  4. 4.
    Bézier P (1986) The mathematical basis of UNISURF CAD system. Butterworths, London Google Scholar
  5. 5.
    Woodward CD (1987) Blends in geometric modelling. In: Martin RR (ed) Mathematical methods of surfaces II. Oxford University Press, London, pp 255–297 Google Scholar
  6. 6.
    Tiller W (1983) Rational B-splines for curve and surface representation. IEEE Comput Graph Appl 3:61–69. doi: 10.1016/0010-4485(87)90234-X CrossRefGoogle Scholar
  7. 7.
    Piegl L, Tiller W (1987) Curve and surface constructions using rational B-splines. Comput Aided Des 19:485–498. doi: 10.1016/0010-4485(87)90234-X MATHCrossRefGoogle Scholar
  8. 8.
    Schumaker LL (1981) Spline functions: basic theory. Wiley, New York MATHGoogle Scholar
  9. 9.
    Faux DI, Pratt MJ (1979) Computational geometry for design and manufacture. Ellis Horwood, Chichester MATHGoogle Scholar
  10. 10.
    Coons SA (1994) Surfaces for computer-aided design of space forms. Project MAC, Report MAC-TR-41, Massachusetts Institute of Technology Google Scholar
  11. 11.
    Mortenson ME (1985) Geometric modelling. Wiley, New York Google Scholar
  12. 12.
    Vasprille KJ (1975) Computer-aided design applications of the rational B-spline approximation form. PhD thesis, Syracuse University, Syracuse, New York Google Scholar
  13. 13.
    Piegl L (1991) On NURBS: a survey. IEEE Comput Graph Appl 11(1):55–71. doi: 10.1109/38.67702 CrossRefGoogle Scholar
  14. 14.
    Farin G (1990) Curves and surfaces for computer-aided design: a practical guide, 2nd edn. Academic Press, New York MATHGoogle Scholar
  15. 15.
    Hsu W, Woon YI (1998) Current research in the conceptual design of mechanical products. Comput Aided Des 30(5):377–389. doi: 10.1016/S0010-4485(97)00101-2 CrossRefGoogle Scholar
  16. 16.
    Nowacki H, Dingyuan L, Xinmin L (1989) Mesh fairing GC surface generation method. In: Straßer W, Seidel HP (eds) Theory and practise of geometric modelling. Springer, Berlin, pp 93–103 CrossRefGoogle Scholar
  17. 17.
    Nakajima N, Gossard D (1982) Basic study in feature descriptor. MIT CAD Technical Report, Massachusetts Institute of Technology, Cambridge Google Scholar
  18. 18.
    Nowacki H, Rees D (1983) Design and fairing of ship surfaces. In: Barnhill RE, Boehm W (eds) Surfaces in CAGD. North-Holland, Amsterdam, pp 121–134 Google Scholar
  19. 19.
    Hagen H, Schulze G (1990) Variational principles in curve and surface design. In: Hagen H, Roller D (eds) Geometric modelling. Springer, Berlin, pp 161–184 Google Scholar
  20. 20.
    Kallay M (1993) Constrained optimisation in surface design. In: Falcidieno B, Kunii TC (eds) Modelling in computer graphics. Springer, Berlin, pp 85–93 CrossRefGoogle Scholar
  21. 21.
    Brunnett G, Wendt J (1998) Elastic splines with tension control. In: Dæhlen M, Lyche T, Schumaker LL (eds) Mathematical methods for curves and surfaces II. Vanderbilt University Press, Nashville, pp 33–40 Google Scholar
  22. 22.
    Bloor MIG, Wilson MJ (1989) Generating blend surfaces using partial differential equations. Comput Aided Des 21(3):33–39. doi: 10.1016/0010-4485(89)90071-7 CrossRefGoogle Scholar
  23. 23.
    Bloor MIG, Wilson MJ (1989) Blend design as a boundary-value problem. In: Straßer W, Seidel HP (eds) Theory and practise of geometric modelling. Springer, Berlin, pp 221–234 CrossRefGoogle Scholar
  24. 24.
    Ugail H, Bloor MIG, Wilson MJ (1999) Techniques for interactive design using the PDE method. ACM Trans Graph 18(2):195–212. doi: 10.1145/318009.318078 CrossRefGoogle Scholar
  25. 25.
    Farin G, Sapidis N (1989) Curvature and the fairness of curves and surfaces. IEEE Comput Graph Appl 3:25–57. doi: 10.1109/38.19051 Google Scholar
  26. 26.
    Boehm W (1980) Inserting new knots into B-spline curves. Comput Aided Des 12:199–201. doi: 10.1016/0010-4485(80)90154-2 CrossRefGoogle Scholar
  27. 27.
    Léon JC (1991) Modélisation des courbes et des surfaces pour la CFAO. Hermés, Paris Google Scholar
  28. 28.
    Rappoport A, Helor Y, Werman M (1994) Interactive design of smooth objects with probabilistic point constraints. ACM Trans Graph 13:156–176. doi: 10.1145/176579.176582 MATHCrossRefGoogle Scholar
  29. 29.
    Terzopoulos D, Witkin A (1988) Physically based models with rigid and deformable components. IEEE Comput Graph Appl 8(6):41–51. doi: 10.1109/38.20317 CrossRefGoogle Scholar
  30. 30.
    Celniker G, Gossard D (1991) Deformable curve and surface finite-elements for free-form shape design. Comput Graph 25(4):257–266. doi: 10.1145/122718.122746 CrossRefGoogle Scholar
  31. 31.
    Thingvold JA, Cohen E (1990) Physical modelling with B-spline surfaces for interactive design and animation. Comput Graph 24(2):129–137. doi: 10.1145/91385.91430 CrossRefGoogle Scholar
  32. 32.
    Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. Comput Graph 21(4):205–214. doi: 10.1145/37401.37427 CrossRefGoogle Scholar
  33. 33.
    Pentland A, Williams J (1989) Good vibrations: modal dynamics for graphics and animation. Comput Graph 23(3):215–222. doi: 10.1145/74333.74355 Google Scholar
  34. 34.
    Platt J, Barr A (1988) Constraints methods for flexible models. Comput Graph 22(4):279–288. doi: 10.1145/54852.378524 CrossRefGoogle Scholar
  35. 35.
    Borrel P, Rappoport A (1994) Simple constrained deformations for geometric modelling and interactive design. ACM Trans Graph 13:137–155. doi: 10.1145/176579.176581 MATHCrossRefGoogle Scholar
  36. 36.
    Terzopoulos D, Qin H (1994) Dynamic NURBS with geometric constraints for interactive sculpting. ACM Trans Graph 13:103–136. doi: 10.1145/176579.176580 MATHCrossRefGoogle Scholar
  37. 37.
    Cohen MZ (1994) Theory and practise of structural optimisation. Struct Multidiscip Optim 7:20–31. doi: 10.1007/BF01742500 CrossRefGoogle Scholar
  38. 38.
    Nelder JA, Mead R (1965) A simplex method for function minimisation. Comput J 7:308–313. doi: 10.1093/comjnl/7.4.308 MATHCrossRefGoogle Scholar
  39. 39.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C. Cambridge University Press, Cambridge MATHGoogle Scholar
  40. 40.
    Kirkpatrick S, Gellat D Jr, Vecchi MP (1983) Optimisation by simulated annealing. Science 220(4598):671–680. doi: 10.1126/science.220.4598.671 MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Vanderbilt D, Louie SG (1984) A Monte Carlo simulated annealing approach to optimisation over continuous variables. J Comput Phys 56:259–271. doi: 10.1023/A:1004680806815 MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Zienkiewicz OCZ, Campbell JS (1973) Shape optimisation and sequential linear programming. In: Gallagher RH, Zienkiewicz OCZ (eds) Optimal structural design. Wiley, London, pp 109–126 Google Scholar
  43. 43.
    Raphael TH, Ramana GV (1986) Structural shape optimization: a survey. Comput Methods Appl Mech Eng 57(1):91–106. doi: 10.1016/0045-7825(86)90072-1 MATHCrossRefGoogle Scholar
  44. 44.
    Kristensen ES, Madsen NF (1976) On the optimal shape of fillets in plates subject to multiple in-plane loading cases. Int J Numer Methods Eng 10:1007–1019. doi: 10.1002/nme.1620100504 MATHCrossRefGoogle Scholar
  45. 45.
    Imam MH (1982) Three-dimensional shape optimisation. Int J Numer Methods Eng 18:661–673. doi: 10.1002/nme.1620180504 MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.University of BradfordBradfordUK

Personalised recommendations