Skip to main content

A Reengineering Methodology for Supply Chain Networks Operating Under Disruptions

  • Chapter
  • First Online:
Supply Chain Disruptions

Abstract

Goods are procured, produced and distributed to customers using supply chain networks (SCN) involving several facilities owned by a company, or a set of collaborating companies. These networks are engineered or reengineered through strategic decisions on the number, location, capacity, and mission of their production–distribution facilities. Decisions on the selection of suppliers, subcontractors, and 3PLs, and on the offers to make to product-markets, may also be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SCN-STUDIO was developed during a joint research project involving CIRRELT, at University Laval, Defence R&D Canada and Modellium Inc.

References

  1. Banks E (2006) Catastrophic risk: analysis and management. Wiley Finance

    Google Scholar 

  2. Bertrand JWM (2003) Supply chain design: flexibility considerations. In: de Kok AG, Graves SC (eds) Supply chain management: design, coordination and operation. Handbooks in OR and MS, vol 11. Elsevier, Amsterdam

    Google Scholar 

  3. Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer, New York

    MATH  Google Scholar 

  4. Carle MA, Martel A, Zufferey N (2010) The CAT metaheuristic for the solution of multi-period activity-based supply chain network design problems. Research document CIRRELT-2010-52, CIRRELT, Université Laval, Canada

    Google Scholar 

  5. Chopra S, Sodhi MS (2004) Managing risk to avoid supply-chain breakdown. MIT Sloan Manag Rev 46:52–61

    Google Scholar 

  6. Christopher M, Peck H (2004) Building the resilient supply chain. Int J Logist Manag 15(2): 1–13

    Article  Google Scholar 

  7. D’Amboise G, Martel A, Oral M et al (1995) Lélaboration de projets stratégiques. In: Martel A, Oral M (eds) Les défis de la compétitivité. Publi-Relais, Montreal

    Google Scholar 

  8. Dong M (2006) Development of supply chain network robustness index. Int J Serv Oper Inform 1(1/2):54–66

    Google Scholar 

  9. Gogu R, Trau J, Stern B et al (2005) Development of an integrated natural hazard assessment method. Geophys Res Abstr 7:03724

    Google Scholar 

  10. Graves SC, Tomlin B (2003) Process flexibility in supply chains. Manag Sci 49:907–919

    Article  MATH  Google Scholar 

  11. Grossi P, Kunreuther H (2005) Catastrophe modeling: a new approach to managing risk. Springer, New York

    Book  Google Scholar 

  12. Gunasekaran A, Patel C, McGaughey RE (2004) A framework for supply chain performance measurement. Int J Prod Econ 87:333–347

    Article  Google Scholar 

  13. Gutierrez GJ, Kouvelis P, Kurawala A (1996) A robustness approach to uncapacitated network design problems. Eur J Oper Res 94:362–376

    Article  MATH  Google Scholar 

  14. Haimes YY (2004) Catastrophe modeling: a new approach to managing risk. 2nd edn. Springer, New York

    Google Scholar 

  15. Hendricks KB, Singhal VR (2005) Association between supply chain glitches and operating performance. Manag Sci 51(5):695–711

    Article  Google Scholar 

  16. Klibi W, Lasalle F, Martel A et al (2010) The stochastic multi-period location-transportation problem. Transp Sci 44(2):221–237

    Article  Google Scholar 

  17. Klibi W, Martel A (2009) The design of effective and robust supply chain networks. Research document CIRRELT-2009-28, CIRRELT, Université Laval, Canada

    Google Scholar 

  18. Klibi W, Martel A (2010) Modeling approaches for the design of resilient supply networks under disruptions. Research document CIRRELT-2009-27,CIRRELT, Université Laval, Canada

    Google Scholar 

  19. Klibi W, Martel A (2011) Scenario-based supply chain network risk modeling. Research document CIRRELT-2011-30, CIRRELT, Université Laval, Canada

    Google Scholar 

  20. Klibi W, Martel A, Guitouni A (2010a) The design of robust value-creating supply chain networks: a critical review. Eur J Oper Res 203(2):283–293

    Article  MATH  Google Scholar 

  21. Klibi W, Martel A, Guitouni A (2010a) The impact of operations anticipations on the quality of supply chain network design models. Research document CIRRELT-2010-45, CIRRELT, Université Laval, Canada

    Google Scholar 

  22. Kouvelis P (1998) Global sourcing strategies under exchange rate uncertainty. In: Tayur S, Magazine M, Ganeshan R (eds) Quantitative models in supply chain management. Kluwer, Norwell, pp 625–667

    Google Scholar 

  23. Kouvelis P, Yu G (1997) Robust discrete optimization and its applications. Kluwer Academic Publishers, Norwell

    MATH  Google Scholar 

  24. Lee H (2004) The triple-A supply chain. Harvard Bus Rev 82:102–112

    Google Scholar 

  25. Lempert RJ, Groves DG, Popper SW, Bankes SC (2006) A General, analytic method for generating robust strategies and narrative scenarios. Manag Sci 52(4):514–528

    Article  Google Scholar 

  26. Manuj I, Mentzer J (2008) Global supply chain risk management. J Bus Logist 29(1):133–155

    Article  Google Scholar 

  27. Martel A, Benmoussa A, Ezzedine I et al (2010) Military missions scenario generation for the design of logistics support networks, ILS 2010 Proc. Casablanca, Morocco

    Google Scholar 

  28. Mo Y, Harrison TP (2005) A conceptual framework for robust supply chain design under demand uncertainty, Chapter 8. In: Geunes J, Pardalos PM (eds) Supply Chain Optimization. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  29. Pettit TJ, Fiksel J, Croxton KL (2010) Ensuring supply chain resilience: development of a conceptual framework. J Bus Logist 31(1):1–21

    Article  Google Scholar 

  30. Porter M (1980) Competitive strategy: techniques for analyzing industries and competitors. Free Press

    Google Scholar 

  31. Rice J, Caniato F (2003) Building a secure and resilient supply network. Supply Chain Manag Rev 7(5):22–30

    Google Scholar 

  32. Rosenblatt MJ, Lee HL (1987) A robustness approach to facilities design. Int J Prod Res 25(4):479–486

    Article  Google Scholar 

  33. Sabri EH, Beamon BM (2000) A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega 28:581–598

    Article  Google Scholar 

  34. Scawthorn C, Shneider PJ, Shauer BA (2006) Natural hazards—The multihazard approach. Natural Hazards Rev 7(2):39

    Article  Google Scholar 

  35. Semchi-Levi D, Snyder LV, Watson M (2002) Strategies for uncertain times. Supply Chain Manag Rev 6(1):11–12

    Google Scholar 

  36. Shapiro A (2003) Monte carlo sampling methods, chapter 6. In: Ruszczynski A, Shapiro A (eds) Handbooks in OR and MS, vol 10. Elsevier

    Google Scholar 

  37. Sheffi Y (2005) The resilient enterprise: overcoming vulnerability for competitive advantage. MIT Press Books

    Google Scholar 

  38. Sheffi Y (2007) Building a resilient organization. Bridge 37(1):30–36

    Google Scholar 

  39. Shell Global Scenarios to 2025 (2005) The future business environment: trends, trade-offs and choices. Shell International Limited (SIL)

    Google Scholar 

  40. Shen ZJM, Coullard C, Daskin MS (2003) A joint location-inventory model. Transp Sci 37(1):40–55

    Article  Google Scholar 

  41. Snyder LV (2006) Facility location under uncertainty: a review. IIE Trans 38(7):537–554

    Article  Google Scholar 

  42. Snyder LV, Daskin MS (2005) Reliability models for facility location: the expected failure cost case. IIE Trans 39(3):400–416

    Google Scholar 

  43. Snyder LV, Daskin MS (2006) Stochastic p-robust location problems. IIE Trans 38(11):971–985

    Article  Google Scholar 

  44. Thompson A, Strickland A (1999) Strategic management. 11th edn. Irwin, New York

    Google Scholar 

  45. Tomlin B (2006) On the value of mitigation and contingency strategies for managing supply chain disruption risks. Manag Sci 52(5):639–657

    Article  MathSciNet  MATH  Google Scholar 

  46. Van der Heijden K (2005) Scenarios: the art of strategic conversation. 2nd edn. Wiley, New York

    Google Scholar 

  47. Van Opstal D (2007) The resilient economy: integrating competitiveness and security. Council of competitiveness

    Google Scholar 

  48. Yucesan E (2007) Competitive supply chains: a value-based management perspective. Palgrave Macmilan, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Martel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Martel, A., Klibi, W. (2012). A Reengineering Methodology for Supply Chain Networks Operating Under Disruptions. In: Gurnani, H., Mehrotra, A., Ray, S. (eds) Supply Chain Disruptions. Springer, London. https://doi.org/10.1007/978-0-85729-778-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-778-5_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-777-8

  • Online ISBN: 978-0-85729-778-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics