Quaternion Algebra

  • John Vince


Chapter 5 defines a quaternion and its associated algebra. Definitions and examples are given for adding, subtracting and multiplying quaternions. Further sections introduce pure, real and unit quaternions and how to conjugate, normalise and invert them. The matrix form of a quaternion is described in some detail, as this is useful for implementing rotations in space. The chapter summarises key formulae and contains some useful worked examples.


Division Algebra Axial Vector Quaternion Algebra Quaternion Unit Quaternion Matrix 


  1. 1.
    Altmann, S.L.: Rotations, Quaternions and Double Groups. Dover, New York (2005). ISBN-13: 978-0-486-44518-2 (1986) Google Scholar
  2. 3.
    Altmann, S.L.: Rodrigues, and the quaternion scandal. Math. Mag. 62(5), 291–308 (1989) MathSciNetMATHCrossRefGoogle Scholar
  3. 4.
    Altmann, S.L.: Icons and Symmetries. Clarendon Press, Oxford (1992) Google Scholar
  4. 5.
    Altmann, S.L., Ortiz, E.L. (eds.): Mathematics and Social Utopias in France: Olinde Rodrigues and his Times. History of Mathematics, vol. 28. Am. Math. Soc., Providence (2005). ISBN-10: 0-8218-3860-1, ISBN-13: 978-0-8218-3860-0 MATHGoogle Scholar
  5. 9.
    Cheng, H., Gupta, K.C.: An historical note on finite rotations. Trans. ASME J. Appl. Mech. 56(1), 139–145 (1989) MathSciNetCrossRefGoogle Scholar
  6. 12.
    Feynman, R.P.: Symmetry and physical laws. In: Feynman Lectures in Physics, vol. 1 Google Scholar
  7. 13.
    Gauss, C.F.: Mutation des Raumes. In: Carl Friedrich Gauss Werke, Achter Band, pp. 357–361. König. Gesell. Wissen. Göttingen (1900). (1819) Google Scholar
  8. 14.
    Hamilton, W.R.: In: Conway, A.W., Synge, J.L. (eds.) The Mathematical Papers of Sir William Rowan Hamilton, vol. I, Geometrical Optics; Conway, A.W., McDonnell, A.J. (eds.) vol. II, Dynamics; Halberstam, H., Ingram, R.E. (eds.) vol. III, Algebra, Cambridge University Press, Cambridge (1931, 1940, 1967) (1833) Google Scholar
  9. 15.
  10. 16.
    Hamilton, W.R.: On Quaternions: Or a New System of Imaginaries in Algebra. Phil. Mag. 3rd ser. 25 (1844) Google Scholar
  11. 17.
    Hamilton, W.R.: Lectures on Quaternions. Hodges & Smith, Dublin (1853) Google Scholar
  12. 18.
    Hamilton, W.R.: Elements of Quaternions. 2nd edn. Longmans, Green & Co, London (1899–1901) (Jolly, C.J. (ed.) 2 vols.) Google Scholar
  13. 21.
    Tait, P.G.: Elementary Treatise on Quaternions. Cambridge University Press, Cambridge (1867) Google Scholar
  14. 23.
    Wilson, E.B.: Vector Analysis. Yale University Press, New Haven (1901) MATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • John Vince
    • 1
  1. 1.Bournemouth UniversityBournemouthUK

Personalised recommendations