Precursors of Vulvovaginal Squamous Cell Carcinoma

Part of the Essentials of Diagnostic Gynecological Pathology book series (EDGP)


The current classification of intraepithelial lesions of the vulva defines two distinct types of vulvar intraepithelial neoplasia (VIN), termed usual-type VIN (uVIN) and differentiated-type VIN (dVIN). uVIN occurs in younger women, is typically associated with high-risk HPV infection and hence with neoplasia at other anogenital sites. Vaginal intraepithelial neoplasia (VaIN) is also strongly related to HPV infection and is classified morphologically in a similar way to uVIN. Associated carcinomas are generally of warty or basaloid type. By contrast, dVIN occurs in older women, is not typically associated with HPV infection but rather shows a clinicopathological association with lichen sclerosus and HPV-negative keratinizing squamous cell carcinoma. This chapter describes these entities, highlighting the role played by HPV infection in the development of uVIN and VaIN, and discusses whether HPV-associated and non-HPV-associated VIN lesions equate to uVIN and dVIN, respectively.


Intraepithelial Neoplasia Lichen Sclerosus Invasive Squamous Cell Carcinoma Vulvar Intraepithelial Neoplasia Squamous Intraepithelial Neoplasia 


  1. 1.
    Richart RM. Natural history of cervical intraepithelial neoplasia. Clin Obstet Gynecol. 1967;10(4):748–84.Google Scholar
  2. 2.
    Herrington CS, Wells M. Premalignant and malignant squamous lesions of the cervix. In: Fox H, Wells M, editors. Haines and Taylor obstetrical and gynaecological pathology. 4th ed. Edinburgh: Churchill Livingstone; 2002.Google Scholar
  3. 3.
    Tavassoli F, Devilee P, editors. Pathology and genetics of tumours of the breast and female genital organs. Lyon: IARC Press; 2003.Google Scholar
  4. 4.
    Henry MR. The Bethesda system 2001: an update of new terminology for gynecologic cytology. Clin Lab Med. 2003;23(3):585–603.PubMedGoogle Scholar
  5. 5.
    Wilson G. The classification of cervical intraepithelial neoplasia. Histopathology. 2002;40(4):380–5.Google Scholar
  6. 6.
    Ismail S, Fiander A. Grading cervical intraepithelial neoplasia. Histopathology. 2002;40(4):385–90.Google Scholar
  7. 7.
    Heatley MK. How should we grade CIN? Histopa­thology. 2002;40(4):377–80.PubMedGoogle Scholar
  8. 8.
    Srodon M, Stoler MH, Baber GB, Kurman RJ. The distribution of low and high-risk HPV types in vulvar and vaginal intraepithelial neoplasia (VIN and VaIN). Am J Surg Pathol. 2006;30(12):1513–8.PubMedGoogle Scholar
  9. 9.
    De Vuyst H, Clifford GM, Nascimento MC, Madeleine MM, Franceschi S. Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: a meta-analysis. Int J Cancer. 2009;124(7):1626–36.PubMedGoogle Scholar
  10. 10.
    Crum CP, Fu YS, Levine RU, Richart RM, Townsend DE, Fenoglio CM. Intraepithelial squamous lesions of the vulva: biologic and histologic criteria for the distinction of condylomas from vulvar intraepithelial neoplasia. Am J Obstet Gynecol. 1982;144(1):77–83.PubMedGoogle Scholar
  11. 11.
    Crum CP, Braun LA, Shah KV, Fu YS, Levine RU, Fenoglio CM, et al. Vulvar intraepithelial neoplasia: correlation of nuclear DNA content and the presence of a human papilloma virus (HPV) structural antigen. Cancer. 1982;49(3):468–71.PubMedGoogle Scholar
  12. 12.
    Crum CP. Vulvar intraepithelial neoplasia: the concept and its application. Hum Pathol. 1982;13(3):187–9.PubMedGoogle Scholar
  13. 13.
    Crum CP, Liskow A, Petras P, Keng WC, Frick HC. Vulvar intraepithelial neoplasia (severe atypia and carcinoma in situ). A clinicopathologic analysis of 41 cases. Cancer. 1984;54(7):1429–34.PubMedGoogle Scholar
  14. 14.
    Hart WR. Vulvar intraepithelial neoplasia: historical aspects and current status. Int J Gynecol Pathol. 2001;20(1):16–30.PubMedGoogle Scholar
  15. 15.
    Wilkinson E, Kneale B, Lunch P. Report of the ISSVD terminology committee. J Reprod Med. 1986;31(10):973–4.Google Scholar
  16. 16.
    Wilkinson EJ. Normal histology and nomenclature of the vulva, and malignant neoplasms, including VIN. Dermatol Clin. 1992;10(2):283–96.PubMedGoogle Scholar
  17. 17.
    Scully R, Bonfiglio T, Kurman R, Silverberg S, Wilkinsonm E. Histologic typing of female genital tract tumours. In: Scully R, Poulsen H, Sobin L, editors. World health organisation international histological classification of tumours. Berlin: Springer; 2004.Google Scholar
  18. 18.
    Scurry J, Campion M, Scurry B, Kim SN, Hacker N. Pathologic audit of 164 consecutive cases of vulvar intraepithelial neoplasia. Int J Gynecol Pathol. 2006;25(2):176–81.PubMedGoogle Scholar
  19. 19.
    Scurry J, Wilkinson EJ. Review of terminology of precursors of vulvar squamous cell carcinoma. J Low Genit Tract Dis. 2006;10(3):161–9.PubMedGoogle Scholar
  20. 20.
    Logani S, Lu D, Quint WGV, Ellenson LH, Pirog EC. Low-grade vulvar and vaginal intraepithelial neoplasia: correlation of histologic features with human papillomavirus DNA detection and MIB-1 immunostaining. Mod Pathol. 2003;16(8):735–41.PubMedGoogle Scholar
  21. 21.
    Sideri M, Jones RW, Wilkinson EJ, Preti M, Heller DS, Scurry J, et al. Squamous vulvar intraepithelial neoplasia: 2004 modified terminology, ISSVD Vulvar Oncology Subcommittee. J Reprod Med. 2005;50(11):807–10.PubMedGoogle Scholar
  22. 22.
    Park JS, Jones RW, McLean MR, Currie JL, Woodruff JD, Shah KV, et al. Possible etiologic heterogeneity of vulvar intraepithelial neoplasia. A correlation of pathologic characteristics with human papillomavirus detection by in situ hybridization and polymerase chain reaction. Cancer. 1991;67(6):1599–607.PubMedGoogle Scholar
  23. 23.
    Haefner HK, Tate JE, McLachlin CM, Crum CP. Vulvar intraepithelial neoplasia: age, morphological phenotype, papillomavirus DNA, and coexisting invasive carcinoma. Hum Pathol. 1995;26(2):147–54.PubMedGoogle Scholar
  24. 24.
    Hørding U, Junge J, Poulsen H, Lundvall F. Vulvar intraepithelial neoplasia III: a viral disease of undetermined progressive potential. Gynecol Oncol. 1995;56(2):276–9.PubMedGoogle Scholar
  25. 25.
    van Beurden M, ten Kate FJ, Smits HL, Berkhout RJ, de Craen AJ, van der Vange N, et al. Multifocal vulvar intraepithelial neoplasia grade III and multicentric lower genital tract neoplasia is associated with transcriptionally active human papillomavirus. Cancer. 1995;75(12):2879–84.PubMedGoogle Scholar
  26. 26.
    Yang B, Hart WR. Vulvar intraepithelial neoplasia of the simplex (differentiated) type: a clinicopathologic study including analysis of HPV and p53 expression. Am J Surg Pathol. 2000;24(3):429–41.PubMedGoogle Scholar
  27. 27.
    Medeiros F, Nascimento AF, Crum CP. Early vulvar squamous neoplasia: advances in classification, diagnosis, and differential diagnosis. Adv Anat Pathol. 2005;12(1):20–6.PubMedGoogle Scholar
  28. 28.
    Micheletti L, Barbero M, Preti M, Zanotto Valentino MC, Chiringhello B, Pippione M. Vulvar intraepithelial neoplasia of low grade: a challenging diagnosis. Eur J Gynaecol Oncol. 1994;15(1):70–4.PubMedGoogle Scholar
  29. 29.
    Abell MR. Intraepithelial carcinomas of epidermis and squamous mucosa of vulva and perineum. Surg Clin North Am. 1965;45(5):1179–98.PubMedGoogle Scholar
  30. 30.
    Kruse A-J, Bottenberg MJH, Tosserams J, Slangen B, van Marion AMW, van Trappen PO. The absence of high-risk HPV combined with specific p53 and p16INK4a expression patterns points to the HPV-independent pathway as the causative agent for vulvar squamous cell carcinoma and its precursor simplex VIN in a young patient. Int J Gynecol Pathol. 2008;27(4):591–5.PubMedGoogle Scholar
  31. 31.
    van de Nieuwenhof HP, van der Avoort IAM, de Hullu JA. Review of squamous premalignant vulvar lesions. Crit Rev Oncol Hematol. 2008;68(2):131–56.PubMedGoogle Scholar
  32. 32.
    van de Nieuwenhof HP, Bulten J, Hollema H, Dommerholt RG, Massuger LFAG, van der Zee AGJ, et al. Differentiated vulvar intraepithelial neoplasia is often found in lesions, previously diagnosed as lichen sclerosus, which have progressed to vulvar squamous cell carcinoma. Mod Pathol. 2011;24(2):297–305.PubMedGoogle Scholar
  33. 33.
    Klaes R, Benner A, Friedrich T, Ridder R, Herrington S, Jenkins D, et al. p16INK4a immunohistochemistry improves interobserver agreement in the diagnosis of cervical intraepithelial neoplasia. Am J Surg Pathol. 2002;26(11):1389–99.PubMedGoogle Scholar
  34. 34.
    Riethdorf S, Neffen EF, Cviko A, Löning T, Crum CP, Riethdorf L. p16INK4A expression as biomarker for HPV 16-related vulvar neoplasias. Hum Pathol. 2004;35(12):1477–83.PubMedGoogle Scholar
  35. 35.
    Hoevenaars BM, van der Avoort IAM, de Wilde PCM, Massuger LFAG, Melchers WJG, de Hullu JA, et al. A panel of p16(INK4A), MIB1 and p53 proteins can distinguish between the 2 pathways leading to vulvar squamous cell carcinoma. Int J Cancer. 2008;123(12):2767–73.PubMedGoogle Scholar
  36. 36.
    Kong C, Balzer B, Troxell M, Patterson B, Longacre T. p16INK4A immunohistochemistry is superior to HPV in situ hybridization for the detection of high-risk HPV in atypical squamous metaplasia. Am J Surg Pathol. 2007;31(1):33–43.PubMedGoogle Scholar
  37. 37.
    Kong CS, Beck AH, Longacre TA. A panel of 3 markers including p16, ProExC, or HPV ISH is optimal for distinguishing between primary endometrial and endocervical adenocarcinomas. Am J Surg Pathol. 2010;34(7):915–26.PubMedGoogle Scholar
  38. 38.
    van der Avoort IAM, van der Laak JAWM, Paffen A, Grefte JMM, Massuger LFAG, de Wilde PCM, et al. MIB1 expression in basal cell layer: a diagnostic tool to identify premalignancies of the vulva. Mod Pathol. 2007;20(7):770–8.PubMedGoogle Scholar
  39. 39.
    Chen H, Gonzalez JL, Brennick JB, Liu M, Yan S. Immunohistochemical patterns of ProEx C in vulvar squamous lesions: detection of overexpression of MCM2 and TOP2A. Am J Surg Pathol. 2010;34(9):1250–7.PubMedGoogle Scholar
  40. 40.
    Ruhul Quddus M, Xu C, Steinhoff MM, Zhang C, Lawrence WD, Sung CJ. Simplex (differentiated) type VIN: absence of p16INK4 supports its weak association with HPV and its probable precursor role in non-HPV related vulvar squamous cancers. Histopathology. 2005;46(6):718–20.PubMedGoogle Scholar
  41. 41.
    Liegl B, Regauer S. p53 immunostaining in lichen sclerosus is related to ischaemic stress and is not a marker of differentiated vulvar intraepithelial neoplasia (d-VIN). Histopathology. 2006;48(3):268–74.PubMedGoogle Scholar
  42. 42.
    Skapa P, Zamecnik J, Hamsikova E, Salakova M, Smahelova J, Jandova K, et al. Human papillomavirus (HPV) profiles of vulvar lesions: possible implications for the classification of vulvar squamous cell carcinoma precursors and for the efficacy of prophylactic HPV vaccination. Am J Surg Pathol. 2007;31(12):1834–43.PubMedGoogle Scholar
  43. 43.
    Ordi J, Alejo M, Fusté V, Lloveras B, del Pino M, Alonso I, et al. HPV-negative vulvar intraepithelial neoplasia (VIN) with basaloid histologic pattern: an unrecognized variant of simplex (differentiated) VIN. Am J Surg Pathol. 2009;33(11):1659–65.PubMedGoogle Scholar
  44. 44.
    Rigoni-Stern D. Fatti statistica relativi alle malattie cancerose. Giornale per servire ai progressi della Paologica e della Terapoa. 1842;2:507–17.Google Scholar
  45. 45.
    Hausen zur H. Condylomata acuminata and human genital cancer. Cancer Res. 1976;36:794.Google Scholar
  46. 46.
    Hausen zur H. Human papillomaviruses and their possible role in squamous cell carcinomas. Curr Top Microbiol Immunol. 1977;78:1–30.Google Scholar
  47. 47.
    Dürst M, Gissmann L, Ikenberg H, Hausen zur H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA. 1983;80(12):3812–5.PubMedGoogle Scholar
  48. 48.
    Zitz JC, McLachlin CM, Tate JE, Mutter GL, Crum CP. Restriction fragment length polymorphism ­analysis of isotype-labeled polymerase chain reaction-amplified human papillomavirus DNA combines sensitivity with built-in contaminant detection. Mod Pathol. 1994;7(3):407–11.PubMedGoogle Scholar
  49. 49.
    Walboomers J, Jacobs M, Manos M, Bosch F, Kummer J, Shah K, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.PubMedGoogle Scholar
  50. 50.
    Joura E, Leodolter S, Hernandez-Avila M, Wheeler C, Perez G, Koutsky L, et al. Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high-grade vulval and vaginal lesions: a combined analysis of three randomised clinical trials. Lancet. 2007;369(9574):1693–702.PubMedGoogle Scholar
  51. 51.
    Medeiros LR, Rosa DD, Da Rosa MI, Bozzetti MC, Zanini RR. Efficacy of human papillomavirus vaccines: a systematic quantitative review. Int J Gynecol Cancer. 2009;19(7):1166–76.PubMedGoogle Scholar
  52. 52.
    de Villiers E-M, Fauquet C, Broker TR, Bernard H-U, Hausen zur H. Classification of papillomaviruses. Virology. 2004;324(1):17–27.PubMedGoogle Scholar
  53. 53.
    Bernard H-U, Burk RD, Chen Z, van Doorslaer K, Hausen zur H, de Villiers E-M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;40(1):70–9.Google Scholar
  54. 54.
    de Koning MNC, Quint WGV, Pirog EC. Prevalence of mucosal and cutaneous human papillomaviruses in different histologic subtypes of vulvar carcinoma. Mod Pathol. 2008;21(3):334–44.PubMedGoogle Scholar
  55. 55.
    Hebner CM, Laimins LA. Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol. 2006;16(2):83–97.PubMedGoogle Scholar
  56. 56.
    Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci. 2006;110(5):525–41.PubMedGoogle Scholar
  57. 57.
    Moodley M, Sewart S, Herrington CS, Chetty R, Pegoraro R, Moodley J. The interaction between steroid hormones, human papillomavirus type 16, E6 oncogene expression, and cervical cancer. Int J Gynecol Cancer. 2003;13(6):834–42.PubMedGoogle Scholar
  58. 58.
    Chiang CM, Ustav M, Stenlund A, Ho TF, Broker TR, Chow LT. Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc Natl Acad Sci USA. 1992;89(13):5799–803.PubMedGoogle Scholar
  59. 59.
    Wilson VG, West M, Woytek K, Rangasamy D. Papillomavirus E1 proteins: form, function, and features. Virus Genes. 2002;24(3):275–90.PubMedGoogle Scholar
  60. 60.
    Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev. 2004;68(2):362–72.PubMedGoogle Scholar
  61. 61.
    Fang L, Budgeon LR, Doorbar J, Briggs ER, Howett MK. The human papillomavirus type 11 E1^E4 protein is not essential for viral genome amplification. Virology. 2006;351(2):271–9.PubMedGoogle Scholar
  62. 62.
    Wilson R, Ryan GB, Knight GL, Laimins LA, Roberts S. The full-length E1E4 protein of human papillomavirus type 18 modulates differentiation-dependent viral DNA amplification and late gene expression. Virology. 2007;362(2):453–60.PubMedGoogle Scholar
  63. 63.
    Khan J, Davy CE, McIntosh PB, Jackson DJ, Hinz S, Wang Q, et al. Role of calpain in the formation of human papillomavirus type 16 e1^e4 amyloid fibers and reorganization of the keratin network. J Virol. 2011;85(19):9984–97.PubMedGoogle Scholar
  64. 64.
    DiMaio D, Mattoon D. Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene. 2001;20(54):7866–73.PubMedGoogle Scholar
  65. 65.
    Krawczyk E, Suprynowicz FA, Hebert JD, Kamonjoh CM, Schlegel R. The HPV-16 E5 oncoprotein translocates calpactin I to the perinuclear region. J Virol. 2011;85:10968–75.PubMedGoogle Scholar
  66. 66.
    Campo MS, Graham SV, Cortese MS, Ashrafi GH, Araibi EH, Dornan ES, et al. HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology. 2010;407(1):137–42.PubMedGoogle Scholar
  67. 67.
    Zhou J, Frazer I. Papovaviridae: capsid structure and capsid protein function. In: Lacey C, editor. Papillomavirus reviews: current research on papillomaviruses. Leeds: Leeds University Press; 1996. p. 93–100.Google Scholar
  68. 68.
    Cutts F, Franceschi S, Goldie S, Castellsague X, de Sanjose S, Garnett G, et al. Human papillomavirus and HPV vaccines: a review. Bull World Health Organ. 2007;85(9):719–26.PubMedGoogle Scholar
  69. 69.
    Schiller JT, Day PM, Kines RC. Current understanding of the mechanism of HPV infection. Gynecol Oncol. 2010;118:S12–7.PubMedGoogle Scholar
  70. 70.
    McMillan NA, Payne E, Frazer IH, Evander M. Expression of the alpha6 integrin confers papillomavirus binding upon receptor-negative B-cells. Virology. 1999;261(2):271–9.PubMedGoogle Scholar
  71. 71.
    Oliveira JG, Colf LA, McBride AA. Variations in the association of papillomavirus E2 proteins with mitotic chromosomes. Proc Natl Acad Sci USA. 2006;103(4):1047–52.PubMedGoogle Scholar
  72. 72.
    Conway MJ, Meyers C. Replication and assembly of human papillomaviruses. J Dent Res. 2009;88(4):307–17.PubMedGoogle Scholar
  73. 73.
    Southern S, Herrington CS. Disruption of cell cycle control by human papillomaviruses with special reference to cervical carcinoma. Int J Gynecol Cancer. 2000;10(4):263–74.PubMedGoogle Scholar
  74. 74.
    Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248(4951):76–9.PubMedGoogle Scholar
  75. 75.
    Massimi P, Shai A, Lambert P, Banks L. HPV E6 degradation of p53 and PDZ containing substrates in an E6AP null background. Oncogene. 2008;27(12):1800–4.PubMedGoogle Scholar
  76. 76.
    Thomas J, Laimins L, Ruesch M. Perturbation of cell cycle control by E6 and E7 oncoproteins of human papillomaviruses. Papillomavirus Rep. 1998;9:59–64.Google Scholar
  77. 77.
    Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature. 1996;380(6569):79–82.PubMedGoogle Scholar
  78. 78.
    Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature. 1998;396(6706):84–8.PubMedGoogle Scholar
  79. 79.
    Liu X, Roberts J, Dakic A, Zhang Y, Schlegel R. HPV E7 contributes to the telomerase activity of immortalized and tumorigenic cells and augments E6-induced hTERT promoter function. Virology. 2008;375(2):611–23.PubMedGoogle Scholar
  80. 80.
    Munger K, Basile J, Duensing S, Eichten A, Gonzalez S, Grace M, et al. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene. 2001;20(54):7888–98.PubMedGoogle Scholar
  81. 81.
    Helt A-M, Galloway DA. Mechanisms by which DNA tumor virus oncoproteins target the Rb family of pocket proteins. Carcinogenesis. 2003;24(2):159–69.PubMedGoogle Scholar
  82. 82.
    Classon M, Dyson N. p107 and p130: versatile proteins with interesting pockets. Exp Cell Res. 2001;264(1):135–47.PubMedGoogle Scholar
  83. 83.
    Hwang SG, Lee D, Kim J, Seo T, Choe J. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem. 2002;277(4):2923–30.PubMedGoogle Scholar
  84. 84.
    Massimi P, Pim D, Banks L. Human papillomavirus type 16 E7 binds to the conserved carboxy-terminal region of the TATA box binding protein and this contributes to E7 transforming activity. J Gen Virol. 1997;78(10):2607–13.PubMedGoogle Scholar
  85. 85.
    Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Dürr P. Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene. 1996;13(11):2323–30.PubMedGoogle Scholar
  86. 86.
    Jones DL, Alani RM, Münger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 1997;11(16):2101–11.PubMedGoogle Scholar
  87. 87.
    Li Y, Nichols MA, Shay JW, Xiong Y. Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res. 1994;54(23):6078–82.PubMedGoogle Scholar
  88. 88.
    Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer. 2001;92(2):276–84.PubMedGoogle Scholar
  89. 89.
    Jackson S, Harwood C, Thomas M, Banks L, Storey A. Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev. 2000;14(23):3065–73.PubMedGoogle Scholar
  90. 90.
    Filippova M, Parkhurst L, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem. 2004;279(24):25729–44.PubMedGoogle Scholar
  91. 91.
    Duensing S, Münger K. Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer. 2004;109(2):157–62.PubMedGoogle Scholar
  92. 92.
    Gray LJ, Bjelogrlic P, Appleyard VCL, Thompson AM, Jolly CE, Lain S, et al. Selective induction of apoptosis by leptomycin B in keratinocytes expressing HPV oncogenes. Int J Cancer. 2007;120(11):2317–24.PubMedGoogle Scholar
  93. 93.
    Jolly CE, Gray LJ, Parish JL, Lain S, Herrington CS. Leptomycin B induces apoptosis in cells containing the whole HPV 16 genome. Int J Oncol. 2009;35(3):649–56.PubMedGoogle Scholar
  94. 94.
    Bryan JT, Brown DR. Association of the human papillomavirus type 11 E1^E4 protein with cornified cell envelopes derived from infected genital epithelium. Virology. 2000;277(2):262–9.PubMedGoogle Scholar
  95. 95.
    Raj K, Berguerand S, Southern S, Doorbar J, Beard P. E1^E4 Protein of human papillomavirus type 16 associates with mitochondria. J Virol. 2004;78(13):7199–207.PubMedGoogle Scholar
  96. 96.
    Pim D, Banks L. HPV-18 E6*I protein modulates the E6-directed degradation of p53 by binding to ­full-length HPV-18 E6. Oncogene. 1999;18(52):7403–8.PubMedGoogle Scholar
  97. 97.
    Webster K, Parish J, Pandya M, Stern PL, Clarke AR, Gaston K. The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. J Biol Chem. 2000;275(1):87–94.PubMedGoogle Scholar
  98. 98.
    Demeret C, Garcia-Carranca A, Thierry F. Transcription-independent triggering of the extrinsic pathway of apoptosis by human papillomavirus 18 E2 protein. Oncogene. 2003;22(2):168–75.PubMedGoogle Scholar
  99. 99.
    Winder D, Pett M, Foster N, Shivji M, Herdman M, Stanley M, et al. An increase in DNA double-strand breaks, induced by Ku70 depletion, is associated with human papillomavirus 16 episome loss and de novo viral integration events. J Pathol. 2007;213(1):27–34.PubMedGoogle Scholar
  100. 100.
    Pett M, Coleman N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol. 2007;212(4):356–67.PubMedGoogle Scholar
  101. 101.
    Hiller T, Poppelreuther S, Stubenrauch F, Iftner T. Comparative analysis of 19 genital human papillomavirus types with regard to p53 degradation, immortalization, phylogeny, and epidemiologic risk classification. Cancer Epidemiol Biomarkers Prev. 2006;15(7):1262–7.PubMedGoogle Scholar
  102. 102.
    Münger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 1989;8(13):4099–105.PubMedGoogle Scholar
  103. 103.
    Watson RA, Thomas M, Banks L, Roberts S. Activity of the human papillomavirus E6 PDZ-binding motif correlates with an enhanced morphological transformation of immortalized human keratinocytes. J Cell Sci. 2003;116(24):4925–34.PubMedGoogle Scholar
  104. 104.
    Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci USA. 2000;97(18):10002–7.PubMedGoogle Scholar
  105. 105.
    Scurry J. Does lichen sclerosus play a central role in the pathogenesis of human papillomavirus negative vulvar squamous cell carcinoma? The itch-scratch-lichen sclerosus hypothesis. Int J Gynecol Cancer. 1999;9(2):89–97.PubMedGoogle Scholar
  106. 106.
    Eva LJ, Ganesan R, Chan KK, Honest H, Luesley DM. Differentiated-type vulval intraepithelial neoplasia has a high-risk association with vulval squamous cell carcinoma. Int J Gynecol Cancer. 2009;19(4):741–4.PubMedGoogle Scholar
  107. 107.
    Eva LJ, Ganesan R, Chan KK, Honest H, Malik S, Luesley DM. Vulval squamous cell carcinoma occurring on a background of differentiated vulval intraepithelial neoplasia is more likely to recur: a review of 154 cases. J Reprod Med. 2008;53(6):397–401.PubMedGoogle Scholar
  108. 108.
    Roma AA, Hart WR. Progression of simplex (differentiated) vulvar intraepithelial neoplasia to invasive squamous cell carcinoma: a prospective case study confirming its precursor role in the pathogenesis of vulvar cancer. Int J Gynecol Pathol. 2007;26(3):248–53.PubMedGoogle Scholar
  109. 109.
    van de Nieuwenhof HP, van Kempen LCLT, de Hullu JA, Bekkers RLM, Bulten J, Melchers WJG, et al. The etiologic role of HPV in vulvar squamous cell carcinoma fine tuned. Cancer Epidemiol Biomarkers Prev. 2009;18(7):2061–7.PubMedGoogle Scholar
  110. 110.
    Pinto AP, Miron A, Yassin Y, Monte N, Woo TYC, Mehra KK, et al. Differentiated vulvar intraepithelial neoplasia contains TP53 mutations and is genetically linked to vulvar squamous cell carcinoma. Mod Pathol. 2010;23(3):404–12.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of PathologyNinewells HospitalDundeeUK
  2. 2.Department of Pathology, Ninewells Hospital and Division of Cancer ResearchJacqui Wood Cancer Centre, University of DundeeJames Arrott DriveUK

Personalised recommendations