Skip to main content

Synthesis of Best Practice

  • Chapter
  • First Online:
Type 1 Diabetes
  • 1633 Accesses

Abstract

In the preceding chapters, we have seen elegant discussions of the hormonal and metabolic responses to exercise and how these responses are altered by type 1 diabetes and insulin therapy. In Chap. 1, we have seen how exercise exerts a great demand on the capacity of the human body to maintain blood glucose homeostasis. The normal physiological counterregulatory hormone response generated by exercise produces coordinated endocrine response which switches the physiological state from the postabsorptive to the exercise state, enabling release of the nutrients required to support increased work. Increased glucose utilization by skeletal muscle proportionate to the duration and intensity of exercise is counteracted by a complex and well-coordinated endocrine response. Hepatic glucose production (through increased glycogenolysis and gluconeogenesis) mediated through increased glucagon and a fall in insulin concentrations in the portal vein are important stimulators of hepatic glucose production during low- and moderate-intensity exercise. Further counterregulatory catecholamine responses during high-intensity exercise are important in intense exercise and with modest hypoglycemia in nondiabetic intervals. It is perhaps surprising that even in nondiabetic individuals, preexercise hypoglycemia is associated with blunted counterregulation during subsequent exercise, and prior exercise blunts the counterregulatory response to subsequent hypoglycemia. There are further age-, gender-, and obesity-related difference in these responses. It is therefore entirely predictable that diabetes and insulin treatment is likely to have very significant effects on the ability to perform exercise though changes in glycemic and counterregulatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallen I. Exercise in type 1 diabetes. Diabet Med. 2003;20:2–5.

    Article  PubMed  Google Scholar 

  2. Lumb AN, Gallen IW. Diabetes management for intense exercise [Review, 44 refs]. Curr Opin Endocrinol Diabetes Obes. 2009;16(2):150–5.

    Article  PubMed  Google Scholar 

  3. Mitchell TH, Abraham G, Schiffrin A, Leiter LA, Marliss EB. Hyperglycemia after intense exercise in IDDM subjects during continuous subcutaneous insulin infusion. Diabetes Care. 1988;11:311–7.

    Article  PubMed  CAS  Google Scholar 

  4. Guelfi KJ, Ratnam N, Smythe GA, Jones TW, Fournier PA. Effect of intermittent high-intensity compared with continuous moderate exercise on glucose production and utilization in individuals with type 1 diabetes. Am J Physiol Endocrinol Metab. 2007;292(3):E865–70.

    Article  PubMed  CAS  Google Scholar 

  5. Bussau VA, Ferreira LD, Jones TW, Fournier PA. The 10-s maximal sprint: a novel approach to counter an exercise-mediated fall in glycemia in individuals with type 1 diabetes. Diabetes Care. 2006;29(3):601–6.

    Article  PubMed  Google Scholar 

  6. Bussau VA, Ferreira LD, Jones TW, Fournier PA. A 10-s sprint performed prior to moderate-intensity exercise prevents early post-exercise fall in glycaemia in individuals with type 1 diabetes. Diabetologia. 2007;50(9):1815–8.

    Article  PubMed  CAS  Google Scholar 

  7. Kennedy JW, Hirshman MF, Gervino EV, Ocel JV, Forse RA, Hoenig SJ, Aronson D, Goodyear LJ, Horton ES. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects With type 2 diabetes [Miscellaneous article]. Diabetes. 1999;48:1192–7.

    Article  PubMed  CAS  Google Scholar 

  8. Kraniou GN, Cameron-Smith D, Hargreaves M. Effect of short-term training on GLUT-4 mRNA and protein expression in human skeletal muscle. Exp Physiol. 2004;89:559–63.

    Article  PubMed  CAS  Google Scholar 

  9. McMahon SK, Ferreira LD, Ratnam N, Davey RJ, Youngs LM, Davis EA, Fournier PA, Jones TW. Glucose requirements to maintain euglycemia after moderate-intensity afternoon exercise in adolescents with type 1 diabetes are increased in a biphasic manner. J Clin Endocrinol Metab. 2007;92(3):963–8.

    Article  PubMed  CAS  Google Scholar 

  10. Galassetti P. Reciprocity of hypoglycaemia and exercise in blunting respective counterregulatory responses: possible role of cortisol as a mediator [Review, 70 refs]. Diabetes, Nutr Metab Clin Exp. 2002;15(5):341–7; discussion 347–8, 362.

    CAS  Google Scholar 

  11. Galassetti P, Tate D, Neill RA, Morrey S, Davis SN. Effect of gender on counterregulatory responses to euglycemic exercise in type 1 diabetes. J Clin Endocrinol Metab. 2002;87(11):5144–50.

    Article  PubMed  CAS  Google Scholar 

  12. Galassetti P, Tate D, Neill RA, Morrey S, Wasserman DH, Davis SN. Effect of antecedent hypoglycemia on counterregulatory responses to subsequent euglycemic exercise in type 1 diabetes. Diabetes. 2003;52(7):1761–9.

    Article  PubMed  CAS  Google Scholar 

  13. Galassetti P, Tate D, Neill RA, Morrey S, Wasserman DH, Davis SN. Effect of sex on counterregulatory responses to exercise after antecedent hypoglycemia in type 1 diabetes. Am J Physiol Endocrinol Metab. 2004;287(1):E16–24.

    Article  PubMed  CAS  Google Scholar 

  14. Galassetti P, Tate D, Neill RA, Richardson A, Leu SY, Davis SN. Effect of differing antecedent hypoglycemia on counterregulatory responses to exercise in type 1 diabetes. Am J Physiol Endocrinol Metab. 2006;290(6):E1109–17.

    Article  PubMed  CAS  Google Scholar 

  15. Sandoval DA, Guy DL, Richardson MA, Ertl AC, Davis SN. Effects of low and moderate antecedent exercise on counterregulatory responses to subsequent hypoglycemia in type 1 diabetes. Diabetes. 2004;53(7):1798–806.

    Article  PubMed  CAS  Google Scholar 

  16. Sandoval DA, Guy DL, Richardson MA, Ertl AC, Davis SN. Acute, same-day effects of antecedent exercise on counterregulatory responses to subsequent hypoglycemia in type 1 diabetes mellitus. Am J Physiol Endocrinol Metab. 2006;290(6):E1331–8.

    Article  PubMed  CAS  Google Scholar 

  17. American College of Sports Medicine and American Diabetes Association joint position statement. Diabetes mellitus and exercise. Med Sci Sports Exerc. 1997;29(12):i–vi.

    Google Scholar 

  18. Maran A, Pavan P, Bonsembiante B, Brugin E, Ermolao A, Avogaro A, Zaccaria M. Continuous glucose monitoring reveals delayed nocturnal hypoglycemia after intermittent high-intensity exercise in nontrained patients with type 1 diabetes. Diabetes Technol Ther. 2010;12(10):763–8.

    Article  PubMed  Google Scholar 

  19. Almeida S, Riddell MC, Cafarelli E. Slower conduction velocity and motor unit discharge frequency are associated with muscle fatigue during isometric exercise in type 1 diabetes mellitus. Muscle Nerve. 2008;37(2):231–40.

    Article  PubMed  CAS  Google Scholar 

  20. Baldi JC, Cassuto NA, Foxx-Lupo WT, Wheatley CM, Snyder EM. Glycemic status affects cardiopulmonary exercise response in athletes with type I diabetes. Med Sci Sports Exerc. 2010;42(8):1454–9.

    Article  PubMed  CAS  Google Scholar 

  21. McKewen MW, Rehrer NJ, Cox C, Mann J. Glycaemic control, muscle glycogen and exercise performance in IDDM athletes on diets of varying carbohydrate content. Int J Sports Med. 1920;20:349–53.

    Article  Google Scholar 

  22. Tamis-Jortberg B, Downs Jr DA, Colten ME, 5. Effects of a glucose polymer sports drink on blood glucose, insulin, and performance in subjects with diabetes. Diabetes Educ. 1996;22:471–87.

    Article  PubMed  CAS  Google Scholar 

  23. Chokkalingam K, Tsintzas K, Snaar JE, Norton L, Solanky B, Leverton E, Morris P, Mansell P, Macdonald IA. Hyperinsulinaemia during exercise does not suppress hepatic glycogen concentrations in patients with type 1 diabetes: a magnetic resonance spectroscopy study. Diabetologia. 2007;50(9):1921–9.

    Article  PubMed  CAS  Google Scholar 

  24. Chokkalingam K, Tsintzas K, Norton L, Jewell K, Macdonald IA, Mansell PI. Exercise under hyperinsulinaemic conditions increases whole-body glucose disposal without affecting muscle glycogen utilisation in type 1 diabetes. Diabetologia. 2007;50(2):414–21.

    Article  PubMed  CAS  Google Scholar 

  25. Harmer AR, Chisholm DJ, McKenna MJ, Hunter SK, Ruell PA, Naylor JM, Maxwell LJ, Flack JR, 11. Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes. Diabetes Care. 2008;31:2097–102; Erratum appears in Diabetes Care. 2009;32(3):523.

    Article  PubMed  CAS  Google Scholar 

  26. Jenni S, Oetliker C, Allemann S, Ith M, Tappy L, Wuerth S, Egger A, Boesch C, Schneiter P, Diem P, Christ E, Stettler C. Fuel metabolism during exercise in euglycaemia and hyperglycaemia in patients with type 1 diabetes mellitus – a prospective single-blinded randomised crossover trial. Diabetologia. 2008;51(8):1457–65.

    Article  PubMed  CAS  Google Scholar 

  27. Robitaille M, Dube MC, Weisnagel SJ, Prud’homme D, Massicotte D, Peronnet F, Lavoie C, 1. Substrate source utilization during moderate intensity exercise with glucose ingestion in type 1 diabetic patients. J Appl Physiol. 2007;103:119–24.

    Article  PubMed  CAS  Google Scholar 

  28. Yamakita T, Ishii T, Yamagami K, Yamamoto T, Miyamoto M, Hosoi M, Yoshioka K, Sato T, Onishi S, Tanaka S, Fujii S. Glycemic response during exercise after administration of insulin lispro compared with that after administration of regular human insulin. Diabetes Res Clin Pract. 2002;57(1):17–22.

    Article  PubMed  CAS  Google Scholar 

  29. Arutchelvam V, Heise T, Dellweg S, Elbroend B, Minns I, Home PD. Plasma glucose and hypoglycaemia following exercise in people with Type 1 diabetes: a comparison of three basal insulins. Diabet Med. 2009;26(10):1027–32.

    Article  PubMed  CAS  Google Scholar 

  30. Tsalikian E, Mauras N, Beck RW, Tamborlane WV, Janz KF, Chase HP, Wysocki T, Weinzimer SA, Buckingham BA, Kollman C, Xing D, Ruedy KJ. Diabetes research in children network DirecNet Study Group: Impact of exercise on overnight glycemic control in children with type 1 diabetes mellitus. J Pediatr. 2005;147(4):528–34.

    Article  PubMed  Google Scholar 

  31. Bracken RM, West DJ, Stephens JW, Kilduff LP, Luzio S, Bain SC. Impact of pre-exercise rapid-acting insulin reductions on ketogenesis following running in Type 1 diabetes. Diabet Med. 2011;28:218–22.

    Article  PubMed  CAS  Google Scholar 

  32. Mauvais-Jarvis F, Sobngwi E, Porcher R, Garnier JP, Vexiau P, Duvallet A, Gautier JF. Glucose response to intense aerobic exercise in type 1 diabetes: maintenance of near euglycemia despite a drastic decrease in insulin dose. Diabetes Care. 2003;26(4):1316–7.

    Article  PubMed  Google Scholar 

  33. Rabasa-Lhoret R, Bourque J, Ducros F, Chiasson JL. Guidelines for premeal insulin dose reduction for postprandial exercise of different intensities and durations in type 1 diabetic subjects treated intensively with a basal-bolus insulin regimen (ultralente-lispro). Diabetes Care. 2001;24(4):625–30.

    Article  PubMed  CAS  Google Scholar 

  34. Francescato MP, Geat M, Fusi S, Stupar G, Noacco C, Cattin L. Carbohydrate requirement and insulin concentration during moderate exercise in type 1 diabetic patients. Metabolism. 2004;53(9):1126–30.

    Article  PubMed  CAS  Google Scholar 

  35. Francescato MP, Zanier M, Gaggioli F. Prediction of glucose oxidation rate during exercise. Int J Sports Med. 2008;29(9):706–12.

    Article  PubMed  CAS  Google Scholar 

  36. Ramires PR, Forjaz CL, Strunz CM, Silva ME, Diament J, Nicolau W, Liberman B, Negrao CE. Oral glucose ingestion increases endurance capacity in normal and diabetic (type I) humans. J Appl Physiol. 1997;83(2):608–14.

    PubMed  CAS  Google Scholar 

  37. Riddell MC, Bar-Or O, Hollidge-Horvat M, Schwarcz HP, Heigenhauser GJ. Glucose ingestion and substrate utilization during exercise in boys with IDDM. J Appl Physiol. 2000;88(4):1239–46.

    PubMed  CAS  Google Scholar 

  38. Jeukendrup AE, Jentjens R. Oxidation of carbohydrate feedings during prolonged exercise: Current thoughts, guidelines and directions for future research. Sports Med. 2000;29(6): 407–24.

    Article  PubMed  CAS  Google Scholar 

  39. Perrone CA, Rodrigues CA, Petkowicz RO, Meyer F. The effect of 8 and 10% carbohydrate drinks on blood glucose level of type 1 diabetic adolescents during and after exercise. Med Sci Sports Exerc [Abstract]. 2004;36:S272.

    Google Scholar 

  40. West DJ, Morton RD, Stephens JW, Bain SC, Kilduff LP, Luzio S, Still R, Bracken RM. Isomaltulose improves postexercise glycemia by reducing CHO oxidation in T1DM. Med Sci Sports Exerc. 2011;43(2):204–10.

    Article  PubMed  CAS  Google Scholar 

  41. Gallen IW, Ballav C, Lumb A, Carr J. Caffeine supplementation reduces exercise induced decline in blood glucose and subsequent hypoglycaemia in adults with type 1 diabetes (T1DM) treated with multiple daily insulin injection (MDI). Diabetes Care. 2010;59:184-P.

    Google Scholar 

  42. Davison R, Aitken G, Charlton J, McKnight J, Kilbride L. Comparison of patient blood glucose monitoring with continuous blood glucose monitoring during exercise. Diabetic Medicine Conference: Diabetes UK Annual Professional Conference; 2010 Mar 3–5; Liverpool, UK

    Google Scholar 

  43. Aitken G, Charlton J, Davison R, Hill G, Kilbride L, McKnight J. Reproducibility of the glucose response to moderate intensity exercise in people with type 1 diabetes exercise. Diabetologia Conference: 45th EASD Annual Meeting of the European Association for the Study of Diabetes Vienna Austria Conference; 2009 Sep 29–Oct 2; Vienna, Austria

    Google Scholar 

  44. Cauza E, Hanusch-Enserer U, Strasser B, Kostner K, Dunky A, Haber P, 12. Strength and endurance training lead to different post exercise glucose profiles in diabetic participants using a continuous subcutaneous glucose monitoring system. Eur J Clin Invest. 2005;35:745–51.

    Article  PubMed  CAS  Google Scholar 

  45. Cauza E, Hanusch-Enserer U, Strasser B, Ludvik B, Kostner K, Dunky A, Haber P, 9. Continuous glucose monitoring in diabetic long distance runners. Int J Sports Med. 2005;26:774–80.

    Article  PubMed  CAS  Google Scholar 

  46. Kapitza C, Hovelmann U, Nosek L, Kurth HJ, Essenpreis M, Heinemann L. Continuous glucose monitoring during exercise in patients with type 1 diabetes on continuous subcutaneous insulin infusion. J Diabetes Sci Technol. 2010;4(1):123–31.

    PubMed  Google Scholar 

  47. Iscoe KE, Corcoran M, Riddell MC, 3. High rates of nocturnal hypoglycemia in a unique sports camp for athletes with type 1 diabetes: Lessons learned from continuous glucose monitoring systems. Can J Diabetes. 2008;32:182–9.

    CAS  Google Scholar 

  48. Svarstad E, Gerdts E, Omvik P, Ofstad J, Iversen BM. Renal hemodynamic effects of captopril and doxazosin during slight physical activity in hypertensive patients with type-1 diabetes mellitus. Kidney Blood Press Res. 2001;24(1):64–70.

    Article  PubMed  CAS  Google Scholar 

  49. Tuominen JA, Ebeling P, Koivisto VA. Long-term lisinopril therapy reduces exercise-induced albuminuria in normoalbuminuric normotensive IDDM patients. Diabetes Care. 1998;21(8):1345–8.

    Article  PubMed  CAS  Google Scholar 

  50. Viberti G, Pickup JC, Bilous RW, Keen H, Mackintosh D. Correction of exercise-induced microalbuminuria in insulin-dependent diabetics after 3 weeks of subcutaneous insulin infusion. Diabetes. 1981;30:818–23.

    Article  PubMed  CAS  Google Scholar 

  51. Kruger M, Gordjani N, Burghard R. Postexercise albuminuria in children with different duration of type-1 diabetes mellitus. Pediatr Nephrol. 1996;10(5):594–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Gallen B.Sc., M.D., FRCP .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Gallen, I. (2012). Synthesis of Best Practice. In: Type 1 Diabetes. Springer, London. https://doi.org/10.1007/978-0-85729-754-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-754-9_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-753-2

  • Online ISBN: 978-0-85729-754-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics