Pre-exercise Insulin and Carbohydrate Strategies in the Exercising T1DM Individual

  • Richard M. Bracken
  • Daniel J. West
  • Stephen C. Bain


This chapter will examine the evidence that currently exists for the use of pre-exercise strategies comprised of changes in exogenous insulin administration and carbohydrate ingestion to improve post-exercise glycemia. Physical exercise is a complex metabolic stressor, the magnitude of which is determined by its duration, intensity, mode, and frequency. Pre-exercise reductions in exogenous insulin and/or carbohydrate consumption improve glycemia and may improve performance especially when considering endurance exercise. However, the exact determinants of the strategy, namely, the degree of rapid-acting insulin reduction and the amount, type, and timing of carbohydrate, still remain to be determined. With an increase in the use of basal-bolus routines and knowledge of “carbohydrate counting,” more confidence can be gleaned from research examining manipulations of these insulins combined with ingestion of different carbohydrates in type 1 individuals. Additionally, detailed knowledge of the effects of exercise in the T1DM individual offers more potential to avoid post-exercise hypoglycemia.


Resistance Exercise Blood Glucose Concentration Glycemic Index Insulin Lispro Insulin Detemir 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    MacDonald MJ. Postexercise late-onset hypoglycaemia in insulin-dependent diabetic patients. Diabetes Care. 1987;10:584–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Campaigne BN, Wallberg-Henriksson H, Gunnarsson R. Glucose and insulin responses in relation to insulin dose and caloric intake 12 h after acute physical exercise in men with IDDM. Diabetes Care. 1987;10:716–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Tsalikian E, Maurus N, Beck RW, Janz KF, Chase HP, et al. Impact of exercise on overnight glycemic control in children with type 1 diabetes mellitus. J Paediatr. 2005;147:528–34.CrossRefGoogle Scholar
  4. 4.
    Bussau VA, Ferreira LD, Jones TW, Fournier PA. The 10-s maximal sprint: a novel approach to counter an exercise-mediated fall in glycemia in individuals with type 1 diabetes. Diabetes Care. 2006;29:601–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Guelfi KJ, Jones TW, Fournier PA. Intermittent high-intensity exercise does not increase the risk of early post-exercise hypoglycaemia in individuals with type 1 diabetes. Diabetes Care. 2005;28(2):416–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Guelfi KJ, Jones TW, Fournier PA. The decline in blood glucose levels is less with intermittent high-intensity compared with moderate exercise in individuals with type 1 diabetes. Diabetes Care. 2005;28(6):1289–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Iscoe KR, Riddell MC. Continuous moderate-intensity exercise with or without intermittent high-intensity work: effects on acute and late glycaemia in athletes with type 1 diabetes mellitus. Diabet Med. 2011;28(7):824–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Bussau VA, Ferreira LD, Jones TW, Fournier PA. A 10-s sprint performed prior to moderate-intensity exercise prevents early post-exercise fall in glycaemia in individuals with type 1 diabetes. Diabetologia. 2007;50(9):1815–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Maran A, Pavan P, Bonsembiante B, Brugin E, Ermolao A, Avogaro A, Zaccaria M. Continuous glucose monitoring reveals delayed nocturnal hypoglycaemia after intermittent high-intensity exercise in nontrained patients with type 1 diabetes. Diabetes Technol Ther. 2010. doi:10.1089/dia.2010.0038.Google Scholar
  10. 10.
    Chokkalingam K, Tsintzas K, Norton L, Jewell K, Macdonald IA, Mansell PI. Exercise under hyperinsulinaemic conditions increases whole-body glucose disposal without affecting muscle glycogen utilisation in type 1 diabetes. Diabetologia. 2007;50:414–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Dandona P, Hooke D, Bell J. Exercise and insulin absorption from subcutaneous injection site. Br Med J. 1980;280:479–80.Google Scholar
  12. 12.
    Dubé MC, Weisnagel J, Homme DP, Lavoie C. Exercise and newer insulins: how much glucose supplement to avoid hypoglycemia. Med Sci Sports Exerc. 2005;37:1276–82.PubMedCrossRefGoogle Scholar
  13. 13.
    Hernandez JM, Moccia T, Fluckey JD, Ulbrecht JS, Farrell PA. Fluid snacks to help persons with type 1 diabetes avoid late onset post-exercise hypoglycemia. Med Sci Sports Exerc. 2000;32:904–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Jenni S, Oetliker S, Allemann M. Fuel metabolism during exercise in euglycaemia and hyperglycaemia in patients with type 1 diabetes mellitus – a prospective single-blinded randomised crossover trial. Diabetologia. 2008;51:1457–65.PubMedCrossRefGoogle Scholar
  15. 15.
    Mauvais-Jarvis F, Sobngwi E, Porcher R, Garnier JP, Vexiau P, Duvallet A, Gautier JF. Glucose response to intense aerobic exercise in type 1 diabetes. Diabetes Care. 2003;26:1316–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Perrone C, Laitano O, Mayer F. Effect of carbohydrate ingestion on the glycemic response to type 1 diabetic adolescents during exercise. Diabetes Care. 2005;28:2537–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Peter R, Luzio SD, Dunseath G, Miles A, Hare B, Backx K, Pauvaday V, Owens DR. Effects of exercise on the absorption of insulin glargine in patients with type 1 diabetes. Diabetes Care. 2005;28:560–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Rabasa-Lhoret R, Bourque J, Ducros F, Chiasson J. Guidelines for premeal insulin dose reduction for postprandial exercise of different intensities and durations in type 1 diabetic subjects treated intensively with a basal-bolus insulin regimen (ultralente-lispro). Diabetes Care. 2001;24:625–30.PubMedCrossRefGoogle Scholar
  19. 19.
    Tuominen JA, Karonen SL, Melamies L, Bolli G, Koivisto VA. Exercise-induced hypoglycaemia in IDDM patients treated with a short-acting insulin analogue. Diabetologia. 1995;38:106–11.PubMedCrossRefGoogle Scholar
  20. 20.
    Asp S, Daugaard JR, Richter EA. Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle. J Physiol. 1995;482:705–12.PubMedGoogle Scholar
  21. 21.
    Asp S, Daugaard JR, Kristiansen S, Kiens B, Richter EA. Eccentric exercise decreases maximal insulin action in humans. J Physiol. 1996;494:891–8.PubMedGoogle Scholar
  22. 22.
    Wenger HW, Bell GJ. The interactions of intensity, frequency and duration of exercise training in alerting cardiorespiratory fitness. Sports Med. 1986;3:345–56.CrossRefGoogle Scholar
  23. 23.
    Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, Yamamoto K. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc. 1996;28:1327–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Sigal RJ, Kenny GP, Boule NG, Wells GA, Prudhomme D, Fortier M, Reid RD, Tulloch H, Coyle D, Phillips P, Jennings A, Faffey J. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147:357–69.PubMedGoogle Scholar
  25. 25.
    Jorge ML, de Oliveira VN, Resende NM, Paraiso LF, Calixto A, Diniz AL, Resende ES, Ropelle ER, Carvalheira JB, Espindola FS, Jorge PT, Geloneze B. The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatroy markers, adipocytokines, and muscle insulin signalling in patients with type 2 diabetes mellitus. Metabolism. 2011;60(9):1244–52. doi:10.1016/j.metabol.2011.01.006.PubMedCrossRefGoogle Scholar
  26. 26.
    Durak EP, Jovanovic-Peterson L, Peterson CM. Randomized crossover study of effect of resistance training on glycemic control, muscular strength, and cholesterol in type 1 diabetic men. Diabetes Care. 1990;13:1039–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Ramalho AC, de Lourdes Lima M, Nunes F, Cambuí Z, Barbosa C, Andrade A, Viana A, Martins M, Abrantes V, Aragão C, Temístocles M. The effect of resistance versus aerobic training on metabolic control in patients with type-1 diabetes mellitus. Diabetes Res Clin Pract. 2006;72:271–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Jiminez C, Santiago M, Sitler M, Boden G, Homko C. Insulin-sensitivity responses to a single bout of resistive exercise in type 1 diabetes mellitus. J Sport Rehabil. 2009;18:564–71.Google Scholar
  29. 29.
    Essen-Gustavsson B, Tesch PA. Glycogen and triglyceride utilization in relation to muscle metabolic characteristics in men performing heavy-resistance exercise. Eur J Appl Physiol Occup Physiol. 1990;61:5–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Robergs RA, Pearson DR, Costill DL, Pascoe DD, Benedict MA, Lambert CP, Zachwieja JJ. Muscle glycogenolysis during differing intensities of weight-resistance exercise. J Appl Physiol. 1991;70:1700–6.PubMedGoogle Scholar
  31. 31.
    Tesch PA, Ploutz-Snyder LL, Ystrom L, Castro MJ, Dudley GA. Skeletal muscle glycogen loss evoked by resistance exercise. J Strength Cond Res. 1998;12:67–73.Google Scholar
  32. 32.
    Bogardus C, Thuillez P, Ravussin E, Vasquez B, Narimiga M, Azhar S. Effect of muscle glycogen depletion in vivo in insulin action in man. J Clin Invest. 1983;72:1605–10.PubMedCrossRefGoogle Scholar
  33. 33.
    Munger R, Temler E, Jallut D, Haesler E, Felber JP. Correlations of glycogen synthase and phosphorylase activities with glycogen concentration in human musclebiopsies. Evidence for a double-feedback mechanism regulating glycogen synthesis and breakdown. Metabolism. 1993;42:36–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Zachwieja JJ, Costill DL, Beard GC, Robergs RA, Pascoe DD, Anderson DE. The effects of a carbonated carbohydrate drink on gastric emptying gastro-intestinal distress, and exercise performance. Int J Sports Nutr. 1992;2:229–38.Google Scholar
  35. 35.
    Fry AC, Kraemer WJ, Stone MH, Warren BJ, Fleck SJ, Kearney JT, Gordon SE. Endocrine responses to overreaching before and after 1 year of weightlifting. Can J Appl Physiol. 1994;19:400–10.PubMedCrossRefGoogle Scholar
  36. 36.
    French DN, Kraemer WJ, Volek JS, Spiering BA, Judelson DA, Hoffman JR, Maresh CM. Anticipatory responses of catecholamines on muscle force production. J Appl Physiol. 2007;102(1):94–102.PubMedCrossRefGoogle Scholar
  37. 37.
    Matsuse H, Nago T, Takano Y, Shiba N. Plasma growth hormone is elevated immediately after resistance exercise with electrical stimulation and voluntary muscle contraction. Tohoku J Exp Med. 2010;222:69–75.PubMedCrossRefGoogle Scholar
  38. 38.
    Leite RD, Prestes J, Rosa C, De Salles BF, Major A, Miranda H, Simao R. Acute effect of resistance training volume on hormonal responses in trained men. J Sports Med Phys Fitness. 2011;51:322–8.PubMedGoogle Scholar
  39. 39.
    De Feo P, Di Loreto C, Ranchelli A, Fatone C, Gam-belunghe G, Lucidi P, Santeusanio F. Exercise and diabetes. Acta Biomedica. 2006;77:14–7.Google Scholar
  40. 40.
    Grimm JJ. Exercise in type 1 diabetes. In: Nagi D, editor. Exercise and sport in diabetes. Hoboken: Wiley; 2005. p. 25–43.Google Scholar
  41. 41.
    Iafusco D. Diet and physical activity in patients with type 1 diabetes. Acta Biomedica. 2006;77:41–6.Google Scholar
  42. 42.
    Brange J, Vølund A. Insulin analogs with improved pharmacokinetic profiles. Adv Drug Deliv Rev. 1999;35:307–35.PubMedCrossRefGoogle Scholar
  43. 43.
    Leopore M, Pampanelli S, Fanelli C, Porcellatim F, Bartocci L, Di Vincenzo A. Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analogue glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion of insulin lispro. Diabetes. 2000;49:2142–8.CrossRefGoogle Scholar
  44. 44.
    Bracken RM, West D, Stephens JW, Kilduff L, Luzio S, Bain SC. Impact of pre-exercise rapid-acting insulin reductions on ketogenesis following running in type 1 diabetes. Diabet Med. 2011;28(2):218–22.PubMedCrossRefGoogle Scholar
  45. 45.
    West DJ, Morton RD, Bain SC, Stephens JW, Bracken RM. Blood glucose responses to reductions in pre-exercise rapid-acting insulin for 24 h after running in individuals with type 1 diabetes. J Sports Sci. 2010;28(7):781–8.PubMedCrossRefGoogle Scholar
  46. 46.
    West DJ, Morton RD, Stephens JW, Bain SC, Kilduff LP, Luzio S, Still R, Bracken RM. Isomaltulose improves post-exercise glycemia by reducing CHO oxidation in T1DM. Med Sci Sports Exerc. 2011;43(2):204–10.PubMedCrossRefGoogle Scholar
  47. 47.
    West DJ, Stephens JW, Bain SC, Kilduff LP, Luzio S, Still R, Bracken RM. A combined insulin reduction and carbohydrate feeding strategy 30 min before running best preserves blood glucose concentration after exercise through improved fuel oxidation in type 1 diabetes mellitus. J Sports Sci. 2011;29(3):279–89.PubMedCrossRefGoogle Scholar
  48. 48.
    Arutchelvam V, Heise T, Dellweg S, Elbroend B, Minns I, Home PD. Plasma glucose and hypoglycaemia following exercise in people with type 1 diabetes: a comparison of three basal insulins. Diabet Med. 2009;26(10):1027–32.PubMedCrossRefGoogle Scholar
  49. 49.
    Koivisto VA, Felig P. Alterations in insulin absorption and in blood glucose control associated with varying insulin injection sites in diabetic patients. Ann Intern Med. 1980;92(1):59–61.PubMedGoogle Scholar
  50. 50.
    Cryer PE. The prevention and correction of hypoglycaemia. In: Jefferson LS, Cherrington AD, editors. The endocrine pancreas and regulation of metabolism. New York: Oxford University Press; 2001. p. 45–56.Google Scholar
  51. 51.
    Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15:412–26.PubMedCrossRefGoogle Scholar
  52. 52.
    Wallace TM, Matthews DR. Recent advances in the monitoring and management of diabetic ketoacidosis. Q J Med. 2004;97:773–80.CrossRefGoogle Scholar
  53. 53.
    Jain SK, McVie R, Jaramillo JJ, Chen Y. Hyperketonemia (acetoacetate) increases oxidizability of LDL  +  VLDL in type-1 diabetic patients. Free Radic Biol Med. 1998;24:175–81.PubMedCrossRefGoogle Scholar
  54. 54.
    Jain SK, McVie R. Hyperketonemia can increase lipid peroxidation and lower glutathione levels in human erythrocytes in vitro and in type 1 diabetic patients. Diabetes. 1999;48:1850–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Jain SK, McVie R, Jackson R, Levine SN, Lim G. Effect of hyperketonemia on plasma lipid peroxidation levels in diabetic patients. Diabetes Care. 1999;22:1171–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Køeslag JH, Noakes TD, Sloan AW. Post-exercise ketosis. J Physiol (Lond). 1980;301:79–90.Google Scholar
  57. 57.
    Leiper JB, Aulin KP, Söderlund K. Improved gastric emptying rate in humans of a unique glucose polymer with gel-forming properties. Scand J Gastroenterol. 2000;35(11):1143–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Schvarcz E, Palmer M, Aman J, Lindkvist B, Beckman KW. Hypoglycaemia increases the gastric emptying rate in patients with type 1 diabetes mellitus. Diabet Med. 1993;10:660–3.PubMedCrossRefGoogle Scholar
  59. 59.
    Schvarcz E, Palmer M, Aman J, Horowitz M, Stridsberg M, Berne C. Physiological hyperglycaemia slows gastric emptying in normal subjects and patients with insulin-dependent diabetes mellitus. Gastroenterology. 1997;113:60–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Lina BAR, Jonker D, Kozianowski G. Isomaltulose (Palatinose®): a review of biological and toxicological studies. Food Chem Toxicol. 2002;40:1375–81.PubMedCrossRefGoogle Scholar
  61. 61.
    Jeukendrup AE, Jentjens RL. Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Med. 2000;29(6):407–24.PubMedCrossRefGoogle Scholar
  62. 62.
    Steppel JH, Horton ES. Exercise in the management of type 1 diabetes mellitus. Rev Endocr Metab Disord. 2003;4:355–60.PubMedCrossRefGoogle Scholar
  63. 63.
    Diabetes mellitus and exercise. American Diabetes Association. Diabetes Care. 1997;20(12):1908–12.Google Scholar
  64. 64.
    Gallen I. Exercise in type 1 diabetes. Diabet Med. 2003;20:1–17.CrossRefGoogle Scholar
  65. 65.
    Ramires PR, Forjaz CL, Strunz CM, Silva ME, Diament J, Nicolau W, Liberman B, Negrão CE. Oral glucose ingestion increases endurance capacity in normal and diabetic (type I) humans. J Appl Physiol. 1997;83(2):608–14.PubMedGoogle Scholar
  66. 66.
    Riddell MC, Iscoe K. Physical activity, sport and pediatric diabetes. Pediatr Diabetes. 2006;7(1):60–70.PubMedCrossRefGoogle Scholar
  67. 67.
    Gallen I. The management of insulin treated diabetes and sport. Pract Diab Int. 2005;22:307–12.CrossRefGoogle Scholar
  68. 68.
    Davis JM, Burgess WA, Slentz CA, Bartoli WP. Fluid availability and sports drinks differing in carbohydrate type and concentration. Am J Clin Nutr. 1990;51:1054–7.PubMedGoogle Scholar
  69. 69.
    Maughan RJ, Leiper JB. Limitations to fluid replacement during exercise. Can J Appl Physiol. 1999;24:173–87.PubMedCrossRefGoogle Scholar
  70. 70.
    Murray R, Bartoli WP, Eddy DE, Horn MK. Gastric emptying and plasma deuterium accumulation following ingestion of water and two carbohydrate-electrolyte beverages. Int J Sports Nutr. 1997;7:144–53.Google Scholar
  71. 71.
    Jing M, Rayner CK, Jones KL, Horowitz M. Diabetic gastroparesis: diagnosis and management. Drugs. 2009;69:971–86.CrossRefGoogle Scholar
  72. 72.
    Wolever TM, Jenkins DJ, Jenkins AL, Josse RG. The glycemic index: methodology and clinical implications. Am Soc Clin Nutr. 1991;54:846–54.Google Scholar
  73. 73.
    Foster-Powell K, Holt SHA, Brand-Miller JC. International table of glycaemic index and glycemic load values. Am J Clin Nutr. 2002;76:5–56.PubMedGoogle Scholar
  74. 74.
    Jenkins DJ, Wolever TM, Kalmusky J, Giudici S, Giordano C, Wong GS, Bird JN, Patten R, Hall M, Buckley G. Low glycemic index carbohydrate foods in the management of hyperlipidemia. Am J Clin Nutr. 1985;42:604–17.PubMedGoogle Scholar
  75. 75.
    Nansel TR, Gellar L, McGill A. Effect of varying glycemic index meals on blood glucose control assessed with continuous glucose monitoring in youth with type 1 diabetes on basal-bolus insulin regimens. Diabetes Care. 2008;31:695–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Brand JC, Colagiuri S, Crossman S, Allen A, Truswell AS. Low glycaemic index carbohydrate foods improve glucose control in non-insulin dependent diabetes mellitus (NIDDM). Diabetes Care. 1991;14:95–101.PubMedCrossRefGoogle Scholar
  77. 77.
    Gilbertson HR, Brand-Miller JC, Thorburn AW, Evans S, Chondros P, Wether GA. The effect of flexible low glycemic index dietary advice versus measured carbohydrate diets on glycemic control in children with type 1 diabetes. Diabetes Care. 2001;34:1137–43.CrossRefGoogle Scholar
  78. 78.
    Thomas DE, Elliott EJ, Baur L. Low glycemic index or low glycemic load diets for overweight and obesity. Cochrane Database Syst Rev. 2007;18:1–38.Google Scholar
  79. 79.
    DeMarco H, Sucher KP, Cisar CJ, Butterfield GE. Pre-exercise carbohydrate meals: application of glycemic index. Med Sci Sports Exerc. 1999;31:164–70.PubMedCrossRefGoogle Scholar
  80. 80.
    Achten J, Jentjens RL, Brouns F, Jeukendrup AE. Exogenous oxidation of isomaltulose is lower than that of sucrose during exercise in men. J Nutr. 2007;137:1143–8.PubMedGoogle Scholar
  81. 81.
    Stevenson EJ, Williams C, Mash LE, Phillips B, Nute ML. Influence of high-carbohydrate mixed meals with different glycemic indexes on substrate utilisation during subsequent exercise in women. Am J Clin Nutr. 2006;84:354–60.PubMedGoogle Scholar
  82. 82.
    Fernqvist E, Linde B, Ostman J, Gunnarsson R. Effects of physical exercise on insulin absorption in insulin-dependent diabetics. A comparison between human and porcine insulin. Clin Physiol. 1986;6:489–97.PubMedCrossRefGoogle Scholar
  83. 83.
    Lauritzen T, Binder C, Faber OK. Importance of insulin absorption, subcutaneous blood flow, and residual beta-cell function in insulin therapy. Acta Paediatr Scand. 1980;283:81–5.CrossRefGoogle Scholar
  84. 84.
    Linde B, Gunnarsson R. Influence of aprotinin on insulin absorption and subcutaneous blood flow in type 1 (insulin-dependent) diabetes. Diabetologia. 1985;28:645–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Vora JP, Burch A, Peters JR, Owens DR. Absorption of radiolabelled soluble insulin in type 1 (insulin dependent) diabetes: influence of subcutaneous blood flow and anthropometry. Diabet Med. 1993;10:736–43.PubMedCrossRefGoogle Scholar
  86. 86.
    Koivisto VA. Sauna-induced acceleration in insulin absorption from subcutaneous injection site. Br Med J. 1980;280:1411–3.PubMedCrossRefGoogle Scholar
  87. 87.
    Koivisto VA, Fortney S, Hendler R, Felig P. A rise in ambient temperature augments insulin absorption in diabetic patients. Metabolism. 1981;30:402–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Tamás GY, Marre M, Astorga R, Dedov I, Jacobsen J, Lindholm A. Glycaemic control in type 1 diabetic patients using optimised insulin aspart or human insulin in a randomised multinational study. Diabetes Res Clin Pract. 2001;54:105–14.PubMedCrossRefGoogle Scholar
  89. 89.
    Plank J, Wutte A, Brunner G, Siebenhofer A, Semlitsch B, Sommer R, Hirschberger S, Pieber T. A direct comparison of insulin aspart and insulin lispro in patients with type 1 diabetes. Diabetes Care. 2002;25:2053–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Perry E, Gallen IW. Guidelines on the current best practice for the management of type 1 diabetes, sport and exercise. Pract Diab Int. 2009;26:116–23.CrossRefGoogle Scholar
  91. 91.
    Moore LJ, Midgley AW, Thomas G, Thurlow S, McNaughton LR. The effects of low- and high-glycemic index meals on time trial performance. Int J Sports Physiol Perform. 2009;4(3):331–44.PubMedGoogle Scholar
  92. 92.
    Wong SH, Chen YJ, Fung WM, Morris JG. Effect of glycemic index meals on recovery and subsequent endurance capacity. Int J Sports Med. 2009;30(12):898–905.PubMedCrossRefGoogle Scholar
  93. 93.
    Jeukendrup A, Saris WH, Brouns F, Kester AD. A new validated endurance performance test. Med Sci Sports Exerc. 1996;28(2):266–70.PubMedCrossRefGoogle Scholar
  94. 94.
    Bracken RM, Page R, Gray B, Kilduff LP, West DJ, Stephens JW, Bain SC. Isomaltulose improves glycaemia and maintains run performance in type 1 diabetes. Med Sci Sports Exerc. 2011; [Epub ahead of print] doi: 10.1249/MSS.0b013e31823f6557.Google Scholar
  95. 95.
    Stephens FB, Roig M, Armstrong G, Greenhaff PL. Post-exercise ingestion of a unique, high molecular weight glucose polymer solution improves performance during a subsequent bout of cycling exercise. J Sports Sci. 2008;26(2):149–54.PubMedCrossRefGoogle Scholar
  96. 96.
    Bracken RM, Page R, Gray B, West D, Kilduff L, Stephens JW, Bain SC. Waxy barley starch improves high intensity run performance in type 1 diabetes. 2012. Paper in preparation.Google Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Richard M. Bracken
    • 1
  • Daniel J. West
    • 2
  • Stephen C. Bain
    • 3
  1. 1.Health and Sport Science, College of EngineeringSwansea UniversitySwanseaUK
  2. 2.Department of Sport and ExerciseNorthumbria UniversityNewcastle upon TyneUK
  3. 3.Institute of Life Sciences, College of MedicineSwansea UniversitySwansea, WalesUK

Personalised recommendations