The Impact of Type 1 Diabetes on the Physiological Responses to Exercise

  • Michael C. Riddell Ph.D.


To provide energy in the form of carbohydrates, lipids, and protein in the face of increased energy demands during exercise, the healthy body must orchestrate a complex neuroendocrine response that starts at the onset of the activity. This response is continuously modulated as the duration of the exercise increases and as the intensity of the activity changes. Since one of the main fuels for exercise is carbohydrate, glucose utilization by the working muscle must be matched equally by glucose provision, predominantly by the liver, or hypoglycemia will ensue. If the liver cannot keep up with glucose utilization, then carbohydrate intake is critical to maintain performance. Glucose homeostasis during prolonged moderate-intensity exercise (40–60% maximum oxygen uptake [VO2max]) is primarily regulated by a reduction in insulin secretion and an increase in glucagon release from the pancreatic islets, which together helps to increase liver glucose production [1]. The increase in the glucagon-to-insulin ratio raises the rate of glucose appearance (Ra) to match almost perfectly the increased rate of peripheral glucose disposal (Rd) into working muscle (Fig. 2.1).


Aerobic Exercise Muscle Glycogen Respiratory Exchange Ratio Prolonged Exercise Hepatic Glucose Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wasserman DH. Regulation of glucose fluxes during exercise in the postabsorptive state. Annu Rev Physiol. 1995;57:191–218.PubMedCrossRefGoogle Scholar
  2. 2.
    Wasserman DH. Berson award lecture 2008 four grams of glucose. Am J Physiol Endocrinol Metab. 2009;296(1):E11–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Levine SA, Gordon B, Derick CL. Some changes in the chemical constituents of the blood following a marathon race: with special reference to the development of hypoglycemia. J Am Med Assoc. 1924;82(22):1778–9.CrossRefGoogle Scholar
  4. 4.
    Frayn KN. Fat as a fuel: emerging understanding of the adipose tissue-skeletal muscle axis. Acta Physiol (Oxf). 2010;199(4):509–18.CrossRefGoogle Scholar
  5. 5.
    Dennis SC, Noakes TD, Hawley JA. Nutritional strategies to minimize fatigue during prolonged exercise: fluid, electrolyte and energy replacement. J Sports Sci. 1997;15(3):305–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Cryer PE. Hypoglycemia: still the limiting factor in the glycemic management of diabetes. Endocr Pract. 2008;14(6):750–6.PubMedGoogle Scholar
  7. 7.
    Cryer PE. Hierarchy of physiological responses to hypoglycemia: relevance to clinical hypoglycemia in type I (insulin dependent) diabetes mellitus. Horm Metab Res. 1997;29(3):92–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Marliss EB, Vranic M. Intense exercise has unique effects on both insulin release and its roles in glucoregulation: implications for diabetes. Diabetes. 2002;51 Suppl 1:S271–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Temple MY, Bar-Or O, Riddell MC. The reliability and repeatability of the blood glucose response to prolonged exercise in adolescent boys with IDDM. Diabetes Care. 1995;18(3):326–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Warburton DE, Nicol CW, Bredin SS. Prescribing exercise as preventive therapy. CMAJ. 2006;174(7):961–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Zinman B, Murray FT, Vranic M, Albisser AM, Leibel BS, Mc Clean PA, et al. Glucoregulation during moderate exercise in insulin treated diabetics. J Clin Endocrinol Metab. 1977;45(4):641–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Camacho RC, Galassetti P, Davis SN, Wasserman DH. Glucoregulation during and after exercise in health and insulin-dependent diabetes. Exerc Sport Sci Rev. 2005;33(1):17–23.PubMedGoogle Scholar
  13. 13.
    Tuominen JA, Karonen SL, Melamies L, Bolli G, Koivisto VA. Exercise-induced hypoglycaemia in IDDM patients treated with a short-acting insulin analogue. Diabetologia. 1995;38(1):106–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Rabasa-Lhoret R, Bourque J, Ducros F, Chiasson JL. Guidelines for premeal insulin dose reduction for postprandial exercise of different intensities and durations in type 1 diabetic subjects treated intensively with a basal-bolus insulin regimen (ultralente-lispro). Diabetes Care. 2001;24(4):625–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Berger M, Halban PA, Assal JP, Offord RE, Vranic M, Renold AE. Pharmacokinetics of subcutaneously injected tritiated insulin: effects of exercise. Diabetes. 1979;28 Suppl 1:53–7.PubMedGoogle Scholar
  16. 16.
    Gerich JE, Langlois M, Noacco C, Karam JH, Forsham PH. Lack of glucagon response to hypoglycemia in diabetes: evidence for an intrinsic pancreatic alpha cell defect. Science. 1973;182(108):171–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Orskov L, Alberti KG, Mengel A, Moller N, Pedersen O, Rasmussen O, et al. Decreased hepatic glucagon responses in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1991;34(7):521–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Schneider SH, Vitug A, Ananthakrishnan R, Khachadurian AK. Impaired adrenergic response to prolonged exercise in type I diabetes. Metabolism. 1991;40(11):1219–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Galassetti P, Tate D, Neill RA, Morrey S, Wasserman DH, Davis SN. Effect of antecedent hypoglycemia on counterregulatory responses to subsequent euglycemic exercise in type 1 diabetes. Diabetes. 2003;52(7):1761–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Cline GW, Rothman DL, Magnusson I, Katz LD, Shulman GI. 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes mellitus. J Clin Invest. 1994;94(6):2369–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Chokkalingam K, Tsintzas K, Snaar JE, Norton L, Solanky B, Leverton E, et al. Hyperinsulinaemia during exercise does not suppress hepatic glycogen concentrations in patients with type 1 diabetes: a magnetic resonance spectroscopy study. Diabetologia. 2007;50(9):1921–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Sigal RJ, Purdon C, Fisher SJ, Halter JB, Vranic M, Marliss EB. Hyperinsulinemia prevents prolonged hyperglycemia after intense exercise in insulin-dependent diabetic subjects. J Clin Endocrinol Metab. 1994;79(4):1049–57.PubMedCrossRefGoogle Scholar
  23. 23.
    Sigal R, Kenny G, Oh P, Perkins BA, Plotnikoff RC, Prud’homme D, et al. Physical activity and diabetes. Canadian diabetes association clinical practice guidelines expert committee. Canadian diabetes association 2008 clinical practice guidelines for the prevention and management of diabetes in Canada. Can J Diabetes. 2008;32(1):S37–9.Google Scholar
  24. 24.
    Robertson K, Adolfsson P, Scheiner G, Hanas R, Riddell MC. Exercise in children and adolescents with diabetes. Pediatr Diabetes. 2009;10 Suppl 12:154–68.PubMedCrossRefGoogle Scholar
  25. 25.
    Brooks GA. Cell-cell and intracellular lactate shuttles. J Physiol. 2009;587(Pt 23):5591–600.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee AD, Hansen PA, Schluter J, Gulve EA, Gao J, Holloszy JO. Effects of epinephrine on insulin-stimulated glucose uptake and GLUT-4 phosphorylation in muscle. Am J Physiol. 1997;273(3 Pt 1):C1082–7.PubMedGoogle Scholar
  27. 27.
    Purdon C, Brousson M, Nyveen SL, Miles PD, Halter JB, Vranic M, et al. The roles of insulin and catecholamines in the glucoregulatory response during intense exercise and early recovery in insulin-dependent diabetic and control subjects. J Clin Endocrinol Metab. 1993;76(3):566–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Bussau VA, Ferreira LD, Jones TW, Fournier PA. A 10-s sprint performed prior to moderate-intensity exercise prevents early post-exercise fall in glycaemia in individuals with type 1 diabetes. Diabetologia. 2007;50(9):1815–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Bussau VA, Ferreira LD, Jones TW, Fournier PA. The 10-s maximal sprint: a novel approach to counter an exercise-mediated fall in glycemia in individuals with type 1 diabetes. Diabetes Care. 2006;29(3):601–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Yardley JE, Sigal RJ, Perkins BA, Riddell M. Performing resistance exercise before aerobic exercise reduces the risk of hypoglycemia in type 1 diabetes: a study using continuous glucose monitoring. Can J Diabetes. 2010;34(3):247.Google Scholar
  31. 31.
    Guelfi KJ, Ratnam N, Smythe GA, Jones TW, Fournier PA. Effect of intermittent high-intensity compared with continuous moderate exercise on glucose production and utilization in individuals with type 1 diabetes. Am J Physiol Endocrinol Metab. 2007;292(3):E865–70.PubMedCrossRefGoogle Scholar
  32. 32.
    Iscoe KE, Riddell MC. Continuous moderate-intensity exercise with or without intermittent high-intensity work: effects on acute and late glycaemia in athletes with type 1 diabetes mellitus. Diabet Med. 2011;28(7):824–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Delvecchio M, Zecchino C, Salzano G, Faienza MF, Cavallo L, De Luca F, et al. Effects of moderate-severe exercise on blood glucose in type 1 diabetic adolescents treated with insulin pump or glargine insulin. J Endocrinol Invest. 2009;32(6):519–24.PubMedGoogle Scholar
  34. 34.
    MacDonald MJ. Post-exercise late-onset hypoglycemia in insulin-dependent diabetic patients. Diabetes Care. 1987;10(5):584–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Taplin CE, Cobry E, Messer L, McFann K, Chase HP, Fiallo-Scharer R. Preventing post-exercise nocturnal hypoglycemia in children with type 1 diabetes. J Pediatr. 2010;157(5):784–8.e1.PubMedCrossRefGoogle Scholar
  36. 36.
    Iscoe KE, Campbell JE, Jamnik V, Perkins BA, Riddell MC. Efficacy of continuous real-time blood glucose monitoring during and after prolonged high-intensity cycling exercise: spinning with a continuous glucose monitoring system. Diabetes Technol Ther. 2006;8(6):627–35.PubMedCrossRefGoogle Scholar
  37. 37.
    Iscoe KE, Corcoran M, Riddell MC. High rates of nocturnal hypoglycemia in a unique sports camp for athletes with type 1 diabetes: lessons learned from continuous glucose monitoring. Can J Diabetes. 2008;32(3):182–9.Google Scholar
  38. 38.
    Tsalikian E, Mauras N, Beck RW, Tamborlane WV, Janz KF, Chase HP, et al. Impact of exercise on overnight glycemic control in children with type 1 diabetes mellitus. J Pediatr. 2005;147(4):528–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Maran A, Pavan P, Bonsembiante B, Brugin E, Ermolao A, Avogaro A, et al. Continuous glucose monitoring reveals delayed nocturnal hypoglycemia after intermittent high-intensity exercise in nontrained patients with type 1 diabetes. Diabetes Technol Ther. 2010;12(10):763–8.PubMedCrossRefGoogle Scholar
  40. 40.
    McMahon SK, Ferreira LD, Ratnam N, Davey RJ, Youngs LM, Davis EA, et al. Glucose requirements to maintain euglycemia after moderate-intensity afternoon exercise in adolescents with type 1 diabetes are increased in a biphasic manner. J Clin Endocrinol Metab. 2007;92(3):963–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Krzentowski G, Pirnay F, Pallikarakis N, Luyckx AS, Lacroix M, Mosora F, et al. Glucose utilization during exercise in normal and diabetic subjects. The role of insulin. Diabetes. 1981;30(12):983–9.PubMedGoogle Scholar
  42. 42.
    Ramires PR, Forjaz CL, Strunz CM, Silva ME, Diament J, Nicolau W, et al. Oral glucose ingestion increases endurance capacity in normal and diabetic (type I) humans. J Appl Physiol. 1997;83(2):608–14.PubMedGoogle Scholar
  43. 43.
    Riddell MC, Bar-Or O, Hollidge-Horvat M, Schwarcz HP, Heigenhauser GJ. Glucose ingestion and substrate utilization during exercise in boys with IDDM. J Appl Physiol. 2000;88(4):1239–46.PubMedGoogle Scholar
  44. 44.
    Francescato MP, Geat M, Fusi S, Stupar G, Noacco C, Cattin L. Carbohydrate requirement and insulin concentration during moderate exercise in type 1 diabetic patients. Metabolism. 2004;53(9):1126–30.PubMedCrossRefGoogle Scholar
  45. 45.
    Robitaille M, Dube MC, Weisnagel SJ, Prud’homme D, Massicotte D, Peronnet F, et al. Substrate source utilization during moderate intensity exercise with glucose ingestion in type 1 diabetic patients. J Appl Physiol. 2007;103(1):119–24.PubMedCrossRefGoogle Scholar
  46. 46.
    Wahren J, Hagenfeldt L, Felig P. Splanchnic and leg exchange of glucose, amino acids, and free fatty acids during exercise in diabetes mellitus. J Clin Invest. 1975;55(6):1303–14.PubMedCrossRefGoogle Scholar
  47. 47.
    Murray FT, Zinman B, McClean PA, Denoga A, Albisser AM, Leibel BS, et al. The metabolic response to moderate exercise in diabetic man receiving intravenous and subcutaneous insulin. J Clin Endocrinol Metab. 1977;44(4):708–20.PubMedCrossRefGoogle Scholar
  48. 48.
    Raguso CA, Coggan AR, Gastaldelli A, Sidossis LS, Bastyr 3rd EJ, Wolfe RR. Lipid and carbohydrate metabolism in IDDM during moderate and intense exercise. Diabetes. 1995;44(9):1066–74.PubMedCrossRefGoogle Scholar
  49. 49.
    Nathan DM, Madnek SF, Delahanty L. Programming pre-exercise snacks to prevent post-exercise hypoglycemia in intensively treated insulin-dependent diabetics. Ann Intern Med. 1985;102(4):483–6.PubMedGoogle Scholar
  50. 50.
    Riddell MC, Bar-Or O, Ayub BV, Calvert RE, Heigenhauser GJ. Glucose ingestion matched with total carbohydrate utilization attenuates hypoglycemia during exercise in adolescents with IDDM. Int J Sport Nutr. 1999;9(1):24–34.PubMedGoogle Scholar
  51. 51.
    Shilo S, Shamoon H. Abnormal growth hormone responses to hypoglycemia and exercise in adults with type I diabetes. Isr J Med Sci. 1990;26(3):136–41.PubMedGoogle Scholar
  52. 52.
    Shilo S, Sotsky M, Shamoon H. Islet hormonal regulation of glucose turnover during exercise in type 1 diabetes. J Clin Endocrinol Metab. 1990;70(1):162–72.PubMedCrossRefGoogle Scholar
  53. 53.
    Simonson DC, Koivisto V, Sherwin RS, Ferrannini E, Hendler R, Juhlin-Dannfelt A, et al. Adrenergic blockade alters glucose kinetics during exercise in insulin-dependent diabetics. J Clin Invest. 1984;73(6):1648–58.PubMedCrossRefGoogle Scholar
  54. 54.
    West DJ, Stephens JW, Bain SC, Kilduff LP, Luzio S, Still R, et al. A combined insulin reduction and carbohydrate feeding strategy 30 min before running best preserves blood glucose concentration after exercise through improved fuel oxidation in type 1 diabetes mellitus. J Sports Sci. 2011;29(3):279–89.PubMedCrossRefGoogle Scholar
  55. 55.
    Francescato MP, Carrato S. Management of exercise-induced glycemic imbalances in type 1 diabetes. Curr Diabetes Rev. 2011;7(4):253–63.PubMedCrossRefGoogle Scholar
  56. 56.
    Chase HP, Lockspeiser T, Peery B, Shepherd M, MacKenzie T, Anderson J, et al. The impact of the diabetes control and complications trial and humalog insulin on glycohemoglobin levels and severe hypoglycemia in type 1 diabetes. Diabetes Care. 2001;24(3):430–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Hamilton J, Daneman D. Deteriorating diabetes control during adolescence: physiological or psychosocial? J Pediatr Endocrinol Metab. 2002;15(2):115–26.PubMedCrossRefGoogle Scholar
  58. 58.
    Komatsu WR, Gabbay MA, Castro ML, Saraiva GL, Chacra AR, de Barros Neto TL, et al. Aerobic exercise capacity in normal adolescents and those with type 1 diabetes mellitus. Pediatr Diabetes. 2005;6(3):145–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Baraldi E, Monciotti C, Filippone M, Santuz P, Magagnin G, Zanconato S, et al. Gas exchange during exercise in diabetic children. Pediatr Pulmonol. 1992;13(3):155–60.PubMedCrossRefGoogle Scholar
  60. 60.
    Gusso S, Hofman P, Lalande S, Cutfield W, Robinson E, Baldi JC. Impaired stroke volume and aerobic capacity in female adolescents with type 1 and type 2 diabetes mellitus. Diabetologia. 2008;51(7):1317–20.PubMedCrossRefGoogle Scholar
  61. 61.
    Huttunen NP, Kaar ML, Knip M, Mustonen A, Puukka R, Akerblom HK. Physical fitness of children and adolescents with insulin-dependent diabetes mellitus. Ann Clin Res. 1984;16(1):1–5.PubMedGoogle Scholar
  62. 62.
    Larsson Y, Persson B, Sterky G, Thoren C. Functional adaptation to rigorous training and exercise in diabetic and nondiabetic adolescents. J Appl Physiol. 1964;19:629–35.PubMedGoogle Scholar
  63. 63.
    Larsson YA, Sterky GC, Ekengren KE, Moller TG. Physical fitness and the influence of training in diabetic adolescent girls. Diabetes. 1962;11:109–17.PubMedGoogle Scholar
  64. 64.
    Poortmans JR, Saerens P, Edelman R, Vertongen F, Dorchy H. Influence of the degree of metabolic control on physical fitness in type I diabetic adolescents. Int J Sports Med. 1986;7(4):232–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Larsen S, Brynjolf I, Birch K, Munck O, Sestoft L. The effect of continuous subcutaneous insulin infusion on cardiac performance during exercise in insulin-dependent diabetics. Scand J Clin Lab Invest. 1984;44(8):683–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Nugent AM, Steele IC, al-Modaris F, Vallely S, Moore A, Campbell NP, et al. Exercise responses in patients with IDDM. Diabetes Care. 1997;20(12):1814–21.PubMedCrossRefGoogle Scholar
  67. 67.
    Veves A, Saouaf R, Donaghue VM, Mullooly CA, Kistler JA, Giurini JM, et al. Aerobic exercise capacity remains normal despite impaired endothelial function in the micro- and macrocirculation of physically active IDDM patients. Diabetes. 1997;46(11):1846–52.PubMedCrossRefGoogle Scholar
  68. 68.
    Ditzel J, Standl E. The problem of tissue oxygenation in diabetes mellitus. Acta Med Scand Suppl. 1975;578:59–68.PubMedGoogle Scholar
  69. 69.
    Kivela R, Silvennoinen M, Touvra AM, Lehti TM, Kainulainen H, Vihko V. Effects of experimental type 1 diabetes and exercise training on angiogenic gene expression and capillarization in skeletal muscle. FASEB J. 2006;20(9):1570–2.PubMedCrossRefGoogle Scholar
  70. 70.
    Valerio G, Spagnuolo MI, Lombardi F, Spadaro R, Siano M, Franzese A. Physical activity and sports participation in children and adolescents with type 1 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2007;17(5):376–82.PubMedCrossRefGoogle Scholar
  71. 71.
    Krause MP, Riddell MC, Hawke TJ. Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes. 2011;12(4 Pt 1):345–64.PubMedCrossRefGoogle Scholar
  72. 72.
    Andersen H, Gadeberg PC, Brock B, Jakobsen J. Muscular atrophy in diabetic neuropathy: a stereological magnetic resonance imaging study. Diabetologia. 1997;40(9):1062–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Andersen H, Stalberg E, Gjerstad MD, Jakobsen J. Association of muscle strength and electrophysiological measures of reinnervation in diabetic neuropathy. Muscle Nerve. 1998;21(12):1647–54.PubMedCrossRefGoogle Scholar
  74. 74.
    Andersen H. Muscular endurance in long-term IDDM patients. Diabetes Care. 1998;21(4):604–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Andersen H, Gjerstad MD, Jakobsen J. Atrophy of foot muscles: a measure of diabetic neuropathy. Diabetes Care. 2004;27(10):2382–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Andreassen CS, Jakobsen J, Ringgaard S, Ejskjaer N, Andersen H. Accelerated atrophy of lower leg and foot muscles–a follow-up study of long-term diabetic polyneuropathy using magnetic resonance imaging (MRI). Diabetologia. 2009;52(6):1182–91.PubMedCrossRefGoogle Scholar
  77. 77.
    Andreassen CS, Jakobsen J, Flyvbjerg A, Andersen H. Expression of neurotrophic factors in diabetic muscle–relation to neuropathy and muscle strength. Brain. 2009;132(Pt 10):2724–33.PubMedCrossRefGoogle Scholar
  78. 78.
    Almeida S, Riddell MC, Cafarelli E. Slower conduction velocity and motor unit discharge frequency are associated with muscle fatigue during isometric exercise in type 1 diabetes mellitus. Muscle Nerve. 2008;37(2):231–40.PubMedCrossRefGoogle Scholar
  79. 79.
    Surridge DH, Erdahl DL, Lawson JS, Donald MW, Monga TN, Bird CE, et al. Psychiatric aspects of diabetes mellitus. Br J Psychiatry. 1984;145:269–76.PubMedCrossRefGoogle Scholar
  80. 80.
    Van der Does FE, De Neeling JN, Snoek FJ, Kostense PJ, Grootenhuis PA, Bouter LM, et al. Symptoms and well-being in relation to glycemic control in type II diabetes. Diabetes Care. 1996;19(3):204–10.PubMedCrossRefGoogle Scholar
  81. 81.
    Riddell MC, Bar-Or O, Gerstein HC, Heigenhauser GJ. Perceived exertion with glucose ingestion in adolescent males with IDDM. Med Sci Sports Exerc. 2000;32(1):167–73.PubMedCrossRefGoogle Scholar
  82. 82.
    Crowther GJ, Milstein JM, Jubrias SA, Kushmerick MJ, Gronka RK, Conley KE. Altered energetic properties in skeletal muscle of men with well-controlled insulin-dependent (type 1) diabetes. Am J Physiol Endocrinol Metab. 2003;284(4):E655–62.PubMedGoogle Scholar
  83. 83.
    Jenni S, Oetliker C, Allemann S, Ith M, Tappy L, Wuerth S, et al. Fuel metabolism during exercise in euglycaemia and hyperglycaemia in patients with type 1 diabetes mellitus–a prospective single-blinded randomised crossover trial. Diabetologia. 2008;51(8):1457–65.PubMedCrossRefGoogle Scholar
  84. 84.
    Magee MF, Bhatt BA. Management of decompensated diabetes. Diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome. Crit Care Clin. 2001;17(1):75–106.PubMedCrossRefGoogle Scholar
  85. 85.
    Andersen H, Schmitz O, Nielsen S. Decreased isometric muscle strength after acute hyperglycaemia in type 1 diabetic patients. Diabet Med. 2005;22(10):1401–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Boehncke S, Poettgen K, Maser-Gluth C, Reusch J, Boehncke WH, Badenhoop K. Endurance capabilities of triathlon competitors with type 1 diabetes mellitus. Dtsch Med Wochenschr. 2009;134(14):677–82.PubMedCrossRefGoogle Scholar
  87. 87.
    Bosch AN, Kirkman MC. Maintenance of hyperglycaemia does not improve performance in a 100 km cycling time trial. S Afr J Sports Med. 2007;19(3):94–8.Google Scholar
  88. 88.
    Heyman E, Briard D, Dekerdanet M, Gratas-Delamarche A, Delamarche P. Accuracy of physical working capacity 170 to estimate aerobic fitness in prepubertal diabetic boys and in 2 insulin dose conditions. J Sports Med Phys Fitness. 2006;46(2):315–21.PubMedGoogle Scholar
  89. 89.
    Stettler C, Jenni S, Allemann S, Steiner R, Hoppeler H, Trepp R, et al. Exercise capacity in subjects with type 1 diabetes mellitus in eu- and hyperglycaemia. Diabetes Metab Res Rev. 2006;22(4):300–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Kelly D, Hamilton JK, Riddell MC. Blood glucose levels and performance in a sports camp for adolescents with type 1 diabetes mellitus: a field study. Int J Pediatr. 2010;2010. doi:10.1155/2010/216167. 216167. Epub 2010 Aug 2.Google Scholar
  91. 91.
    Gonder-Frederick LA, Zrebiec JF, Bauchowitz AU, Ritterband LM, Magee JC, Cox DJ, et al. Cognitive function is disrupted by both hypo- and hyperglycemia in school-aged children with type 1 diabetes: a field study. Diabetes Care. 2009;32(6):1001–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Jimenez CC, Corcoran MH, Crawley JT, Guyton Hornsby W, Peer KS, Philbin RD, et al. National athletic trainers’ association position statement: management of the athlete with type 1 diabetes mellitus. J Athl Train. 2007;42(4):536–45.PubMedGoogle Scholar
  93. 93.
    Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998;49:235–61.PubMedCrossRefGoogle Scholar
  94. 94.
    Chu L, Hamilton J, Riddell MC. Clinical management of the physically active patient with type 1 diabetes. Phys Sportsmed. 2011;39(2):64–77.PubMedCrossRefGoogle Scholar
  95. 95.
    Seeger JP, Thijssen DH, Noordam K, Cranen ME, Hopman MT, Nijhuis-van der Sanden MW. Exercise training improves physical fitness and vascular function in children with type 1 diabetes. Diabetes Obes Metab. 2011;13(4):382–4.PubMedCrossRefGoogle Scholar
  96. 96.
    Heyman E, Toutain C, Delamarche P, Berthon P, Briard D, Youssef H, et al. Exercise training and cardiovascular risk factors in type 1 diabetic adolescent girls. Pediatr Exerc Sci. 2007;19(4):408–19.PubMedGoogle Scholar
  97. 97.
    Harmer AR, Chisholm DJ, McKenna MJ, Hunter SK, Ruell PA, Naylor JM, et al. Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes. Diabetes Care. 2008;31(11):2097–102.PubMedCrossRefGoogle Scholar
  98. 98.
    Krause Mda S, de Bittencourt Jr PI. Type 1 diabetes: can exercise impair the autoimmune event? The L-arginine/glutamine coupling hypothesis. Cell Biochem Funct. 2008;26(4):406–33.PubMedCrossRefGoogle Scholar
  99. 99.
    Moy CS, Songer TJ, LaPorte RE, Dorman JS, Kriska AM, Orchard TJ, et al. Insulin-dependent diabetes mellitus, physical activity, and death. Am J Epidemiol. 1993;137(1):74–81.PubMedGoogle Scholar
  100. 100.
    Coker RH, Kjaer M. Glucoregulation during exercise: the role of the neuroendocrine system. Sports Med. 2005;35(7):575–83.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Physical Activity and Diabetes Unit, School of Kinesiology and Health Science, Muscle Health Research CentreYork UniversityTorontoCanada

Personalised recommendations