Skip to main content

Endocrine and Metabolic Responses to Exercise

  • Chapter
  • First Online:
Type 1 Diabetes

Abstract

The successful completion of any human physical movement requires the transformation of chemical energy into mechanical energy in skeletal muscles at rates appropriate to their needs. The source of this chemical energy is the hydrolysis of adenosine triphosphate (ATP). However, the amount of ATP stored in skeletal muscle is limited and would only last for a few seconds of contraction. Therefore, the ATP must be regenerated continuously at the same rate as it is broken down if the work rate is to be maintained for a prolonged period of time. Generating this continuous supply of energy places a great demand on the capacity of the human body to mobilize and utilize the energy substrates required for muscle contraction and to maintain blood glucose homeostasis in the face of substantial increases in both muscle glucose utilization and hepatic glucose production during exercise. In fact, blood glucose concentrations are normally maintained within a narrow physiological range during exercise as the central nervous system (CNS) relies heavily upon continuous blood glucose supply to meet its energy requirements. In order to achieve this, a decrement in blood glucose concentration during exercise is counteracted by a complex and well-coordinated neuroendocrine and autonomic nervous system response. This counterregulatory response aims to prevent and, when necessary, correct any substantial decreases in blood glucose concentration and thus the development of hypoglycemia. This chapter will describe the main metabolic and neuroendocrine responses to exercise of varying intensity and focus on factors affecting blood glucose utilization in humans. It will also examine gender differences in the endocrine response and substrate utilization during exercise and examine how these responses might be altered in exercising children and adolescents. Finally, this chapter will describe the effects of glucose ingestion before and during exercise on counterregulatory responses, substrate utilization, and exercise performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265:E380–91.

    PubMed  CAS  Google Scholar 

  2. van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536:295–304.

    PubMed  Google Scholar 

  3. Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand. 1967;71:129–39.

    PubMed  CAS  Google Scholar 

  4. Karlsson J, Saltin B. Diet, muscle glycogen, and endurance performance. J Appl Physiol. 1971;31:203–6.

    PubMed  CAS  Google Scholar 

  5. Broberg S, Sahlin K. Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. J Appl Physiol. 1989;67:116–22.

    PubMed  CAS  Google Scholar 

  6. Tsintzas K, Williams C, Constantin-Teodosiu D, et al. Phosphocreatine degradation in type I and type II muscle fibres during submaximal exercise in man: effect of carbohydrate ingestion. J Physiol. 2001;537:305–11.

    PubMed  CAS  Google Scholar 

  7. Ball-Burnett M, Green HJ, Houston ME. Energy metabolism in human slow and fast twitch fibres during prolonged cycle exercise. J Physiol. 1991;437:257–67.

    PubMed  CAS  Google Scholar 

  8. Norman B, Sollevi A, Kaijser L, Jansson E. ATP breakdown products in human skeletal muscle during prolonged exercise to exhaustion. Clin Physiol. 1987;7:503–10.

    PubMed  CAS  Google Scholar 

  9. Tsintzas OK, Williams C, Boobis L, Greenhaff P. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. J Appl Physiol. 1996;81:801–9.

    PubMed  CAS  Google Scholar 

  10. Hultman E, Bergstrom J, Anderson NM. Breakdown and resynthesis of phosphorylcreatine and adenosine triphosphate in connection with muscular work in man. Scand J Clin Lab Invest. 1967;19:56–66.

    PubMed  CAS  Google Scholar 

  11. Sahlin K, Soderlund K, Tonkonogi M, Hirakoba K. Phosphocreatine content in single fibers of human muscle after sustained submaximal exercise. Am J Physiol. 1997;273:C172–8.

    PubMed  CAS  Google Scholar 

  12. Essen B, Jansson E, Henriksson J, Taylor AW, Saltin B. Metabolic characteristics of fibre types in human skeletal muscle. Acta Physiol Scand. 1975;95:153–65.

    PubMed  CAS  Google Scholar 

  13. Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996;76:371–423.

    PubMed  CAS  Google Scholar 

  14. Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241:45–57.

    PubMed  CAS  Google Scholar 

  15. Tsintzas OK, Williams C, Boobis L, Greenhaff P. Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man. J Physiol. 1995;489(Pt 1):243–50.

    PubMed  CAS  Google Scholar 

  16. Vollestad NK, Blom PC. Effect of varying exercise intensity on glycogen depletion in human muscle fibres. Acta Physiol Scand. 1985;125:395–405.

    PubMed  CAS  Google Scholar 

  17. Wahren J, Felig P, Ahlborg G, Jorfeldt L. Glucose metabolism during leg exercise in man. J Clin Invest. 1971;50:2715–25.

    PubMed  CAS  Google Scholar 

  18. Ahlborg G, Felig P. Lactate and glucose exchange across the forearm, legs, and splanchnic bed during and after prolonged leg exercise. J Clin Invest. 1982;69:45–54.

    PubMed  CAS  Google Scholar 

  19. Katz A, Broberg S, Sahlin K, Wahren J. Leg glucose uptake during maximal dynamic exercise in humans. Am J Physiol. 1986;251:E65–70.

    PubMed  CAS  Google Scholar 

  20. Coggan AR. Plasma glucose metabolism during exercise in humans. Sports Med. 1991;11:102–24.

    PubMed  CAS  Google Scholar 

  21. Bergeron R, Kjaer M, Simonsen L, Bulow J, Galbo H. Glucose production during exercise in humans: a-hv balance and isotopic-tracer measurements compared. J Appl Physiol. 1999;87:111–5.

    PubMed  CAS  Google Scholar 

  22. Marliss EB, Vranic M. Intense exercise has unique effects on both insulin release and its roles in glucoregulation: implications for diabetes. Diabetes. 2002;51 Suppl 1:S271–83.

    PubMed  CAS  Google Scholar 

  23. Coggan AR, Coyle EF. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol. 1987;63:2388–95.

    PubMed  CAS  Google Scholar 

  24. Coggan AR, Spina RJ, Kohrt WM, Bier DM, Holloszy JO. Plasma glucose kinetics in a well-trained cyclist fed glucose throughout exercise. Int J Sport Nutr. 1991;1:279–88.

    PubMed  CAS  Google Scholar 

  25. Felig P, Cherif A, Minagawa A, Wahren J. Hypoglycemia during prolonged exercise in normal men. N Engl J Med. 1982;306:895–900.

    PubMed  CAS  Google Scholar 

  26. Petersen KF, Price TB, Bergeron R. Regulation of net hepatic glycogenolysis and gluconeogenesis during exercise: impact of type 1 diabetes. J Clin Endocrinol Metab. 2004;89:4656–64.

    PubMed  CAS  Google Scholar 

  27. Bjorkman O, Eriksson LS. Splanchnic glucose metabolism during leg exercise in 60-hour-fasted human subjects. Am J Physiol. 1983;245:E443–8.

    PubMed  CAS  Google Scholar 

  28. Lavoie C, Ducros F, Bourque J, Langelier H, Chiasson JL. Glucose metabolism during exercise in man: the role of insulin and glucagon in the regulation of hepatic glucose production and gluconeogenesis. Can J Physiol Pharmacol. 1997;75:26–35.

    PubMed  CAS  Google Scholar 

  29. Richter EA, Kiens B, Saltin B, Christensen NJ, Savard G. Skeletal muscle glucose uptake during dynamic exercise in humans: role of muscle mass. Am J Physiol. 1988;254:E555–61.

    PubMed  CAS  Google Scholar 

  30. Galbo H, Holst JJ, Christensen NJ. The effect of different diets and of insulin on the hormonal response to prolonged exercise. Acta Physiol Scand. 1979;107:19–32.

    PubMed  CAS  Google Scholar 

  31. Coggan AR, Kohrt WM, Spina RJ, Bier DM, Holloszy JO. Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J Appl Physiol. 1990;68:990–6.

    PubMed  CAS  Google Scholar 

  32. Jeukendrup AE, Mensink M, Saris WH, Wagenmakers AJ. Exogenous glucose oxidation during exercise in endurance-trained and untrained subjects. J Appl Physiol. 1997;82:835–40.

    PubMed  CAS  Google Scholar 

  33. Jessen N, Goodyear LJ. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol. 2005;99:330–7.

    PubMed  CAS  Google Scholar 

  34. Lauritzen HP, Galbo H, Brandauer J, Goodyear LJ, Ploug T. Large GLUT4 vesicles are stationary while locally and reversibly depleted during transient insulin stimulation of skeletal muscle of living mice: imaging analysis of GLUT4-enhanced green fluorescent protein vesicle dynamics. Diabetes. 2008;57:315–24.

    PubMed  CAS  Google Scholar 

  35. Lauritzen HP, Galbo H, Toyoda T, Goodyear LJ. Kinetics of contraction-induced GLUT4 translocation in skeletal muscle fibers from living mice. Diabetes. 2010;59:2134–44.

    PubMed  CAS  Google Scholar 

  36. Lauritzen HP, Ploug T, Prats C, Tavare JM, Galbo H. Imaging of insulin signaling in skeletal muscle of living mice shows major role of T-tubules. Diabetes. 2006;55:1300–6.

    PubMed  CAS  Google Scholar 

  37. Frosig C, Roepstorff C, Brandt N, et al. Reduced malonyl-CoA content in recovery from exercise correlates with improved insulin-stimulated glucose uptake in human skeletal muscle. Am J Physiol Endocrinol Metab. 2009;296:E787–95.

    PubMed  Google Scholar 

  38. Goodyear LJ, Giorgino F, Balon TW, Condorelli G, Smith RJ. Effects of contractile activity on tyrosine phosphoproteins and PI 3-kinase activity in rat skeletal muscle. Am J Physiol. 1995;268:E987–95.

    PubMed  CAS  Google Scholar 

  39. Hansen PA, Nolte LA, Chen MM, Holloszy JO. Increased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise. J Appl Physiol. 1998;85:1218–22.

    PubMed  CAS  Google Scholar 

  40. Wojtaszewski JF, Hansen BF, Gade J, et al. (2000) Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes 49:325–331

    Google Scholar 

  41. Wojtaszewski JF, Hansen BF, Kiens B, Richter EA. Insulin signaling in human skeletal muscle: time course and effect of exercise. Diabetes. 1997;46:1775–81.

    PubMed  CAS  Google Scholar 

  42. Treebak JT, Taylor EB, Witczak CA, et al. Identification of a novel phosphorylation site on TBC1D4 regulated by AMP-activated protein kinase in skeletal muscle. Am J Physiol Cell Physiol. 2010;298:C377–85.

    PubMed  CAS  Google Scholar 

  43. Koh HJ, Toyoda T, Fujii N, et al. Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle. Proc Natl Acad Sci USA. 2010;107:15541–6.

    PubMed  CAS  Google Scholar 

  44. Witczak CA, Jessen N, Warro DM, et al. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle. Am J Physiol Endocrinol Metab. 2010;298:E1150–60.

    PubMed  CAS  Google Scholar 

  45. Taylor EB, An D, Kramer HF, et al. Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J Biol Chem. 2008;283:9787–96.

    PubMed  CAS  Google Scholar 

  46. Toyoda T, An D, Witczak CA, et al. Myo1c regulates glucose uptake in mouse skeletal muscle. J Biol Chem. 2011;286:4133–40.

    PubMed  CAS  Google Scholar 

  47. DeFronzo RA, Ferrannini E, Sato Y, Felig P, Wahren J. Synergistic interaction between exercise and insulin on peripheral glucose uptake. J Clin Invest. 1981;68:1468–74.

    PubMed  CAS  Google Scholar 

  48. Wasserman DH, Geer RJ, Rice DE, et al. Interaction of exercise and insulin action in humans. Am J Physiol. 1991;260:E37–45.

    PubMed  CAS  Google Scholar 

  49. Hespel P, Vergauwen L, Vandenberghe K, Richter EA. Important role of insulin and flow in stimulating glucose uptake in contracting skeletal muscle. Diabetes. 1995;44:210–5.

    PubMed  CAS  Google Scholar 

  50. Newman JM, Ross RM, Richards SM, Clark MG, Rattigan S. Insulin and contraction increase nutritive blood flow in rat muscle in vivo determined by microdialysis of L-[14C]glucose. J Physiol. 2007;585:217–29.

    PubMed  CAS  Google Scholar 

  51. Poole DC, Copp SW, Hirai DM, Musch TI. Dynamics of muscle microcirculatory and blood-myocyte O(2) flux during contractions. Acta Physiol (Oxf). 2011;202:293–310.

    CAS  Google Scholar 

  52. Constantin-Teodosiu D, Cederblad G, Hultman E. PDC activity and acetyl group accumulation in skeletal muscle during prolonged exercise. J Appl Physiol. 1992;73:2403–7.

    PubMed  CAS  Google Scholar 

  53. Mandarino LJ, Consoli A, Jain A, Kelley DE. Differential regulation of intracellular glucose metabolism by glucose and insulin in human muscle. Am J Physiol. 1993;265:E898–905.

    PubMed  CAS  Google Scholar 

  54. Mandarino LJ, Wright KS, Verity LS, et al. Effects of insulin infusion on human skeletal muscle pyruvate dehydrogenase, phosphofructokinase, and glycogen synthase. Evidence for their role in oxidative and nonoxidative glucose metabolism. J Clin Invest. 1987;80:655–63.

    PubMed  CAS  Google Scholar 

  55. Tsintzas K, Chokkalingam K, Jewell K, Norton L, Macdonald IA, Constantin-Teodosiu D. Elevated free fatty acids attenuate the insulin-induced suppression of PDK4 gene expression in human skeletal muscle: potential role of intramuscular long-chain acyl-coenzyme A. J Clin Endocrinol Metab. 2007;92:3967–72.

    PubMed  CAS  Google Scholar 

  56. Chokkalingam K, Jewell K, Norton L, et al. High-fat/low-carbohydrate diet reduces insulin-stimulated carbohydrate oxidation but stimulates nonoxidative glucose disposal in humans: an important role for skeletal muscle pyruvate dehydrogenase kinase 4. J Clin Endocrinol Metab. 2007;92:284–92.

    PubMed  CAS  Google Scholar 

  57. Patel MS, Roche TE. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990;4:3224–33.

    PubMed  CAS  Google Scholar 

  58. Tsintzas K, Williams C, Constantin-Teodosiu D, Hultman E, Boobis L, Greenhaff P. Carbohydrate ingestion prior to exercise augments the exercise-induced activation of the pyruvate dehydrogenase complex in human skeletal muscle. Exp Physiol. 2000;85:581–6.

    PubMed  CAS  Google Scholar 

  59. Perseghin G, Price TB, Petersen KF, et al. Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med. 1996;335:1357–62.

    PubMed  CAS  Google Scholar 

  60. Mikines KJ, Sonne B, Farrell PA, Tronier B, Galbo H. Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol. 1988;254:E248–59.

    PubMed  CAS  Google Scholar 

  61. Dela F, Mikines KJ, Sonne B, Galbo H. Effect of training on interaction between insulin and exercise in human muscle. J Appl Physiol. 1994;76:2386–93.

    PubMed  CAS  Google Scholar 

  62. Kraniou GN, Cameron-Smith D, Hargreaves M. Acute exercise and GLUT4 expression in human skeletal muscle: influence of exercise intensity. J Appl Physiol. 2006;101:934–7.

    PubMed  CAS  Google Scholar 

  63. Kuo CH, Browning KS, Ivy JL. Regulation of GLUT4 protein expression and glycogen storage after prolonged exercise. Acta Physiol Scand. 1999;165:193–201.

    PubMed  CAS  Google Scholar 

  64. Greiwe JS, Holloszy JO, Semenkovich CF. Exercise induces lipoprotein lipase and GLUT-4 protein in muscle independent of adrenergic-receptor signaling. J Appl Physiol. 2000;89:176–81.

    PubMed  CAS  Google Scholar 

  65. Ren JM, Semenkovich CF, Gulve EA, Gao J, Holloszy JO. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem. 1994;269:14396–401.

    PubMed  CAS  Google Scholar 

  66. Hansen PA, Wang W, Marshall BA, Holloszy JO, Mueckler M. Dissociation of GLUT4 translocation and insulin-stimulated glucose transport in transgenic mice overexpressing GLUT1 in skeletal muscle. J Biol Chem. 1998;273:18173–9.

    PubMed  CAS  Google Scholar 

  67. O’Doherty RM, Bracy DP, Osawa H, Wasserman DH, Granner DK. Rat skeletal muscle hexokinase II mRNA and activity are increased by a single bout of acute exercise. Am J Physiol. 1994;266:E171–8.

    PubMed  Google Scholar 

  68. Koval JA, DeFronzo RA, O’Doherty RM, et al. Regulation of hexokinase II activity and expression in human muscle by moderate exercise. Am J Physiol. 1998;274:E304–8.

    PubMed  CAS  Google Scholar 

  69. Pilegaard H, Osada T, Andersen LT, Helge JW, Saltin B, Neufer PD. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise. Metabolism. 2005;54:1048–55.

    PubMed  CAS  Google Scholar 

  70. Stephens FB, Norton L, Jewell K, Chokkalingam K, Parr T, Tsintzas K. Basal and insulin-stimulated pyruvate dehydrogenase complex activation, glycogen synthesis and metabolic gene expression in human skeletal muscle the day after a single bout of exercise. Exp Physiol. 2010;95:808–18.

    PubMed  CAS  Google Scholar 

  71. Nielsen JN, Derave W, Kristiansen S, Ralston E, Ploug T, Richter EA. Glycogen synthase localization and activity in rat skeletal muscle is strongly dependent on glycogen content. J Physiol. 2001;531:757–69.

    PubMed  CAS  Google Scholar 

  72. Treebak JT, Frosig C, Pehmoller C, et al. Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle. Diabetologia. 2009;52:891–900.

    PubMed  CAS  Google Scholar 

  73. Wende AR, Schaeffer PJ, Parker GJ, et al. A role for the transcriptional coactivator PGC-1alpha in muscle refueling. J Biol Chem. 2007;282:36642–51.

    PubMed  CAS  Google Scholar 

  74. Ikeda S, Miyazaki H, Nakatani T, et al. Up-regulation of SREBP-1c and lipogenic genes in skeletal muscles after exercise training. Biochem Biophys Res Commun. 2002;296:395–400.

    PubMed  CAS  Google Scholar 

  75. Boonsong T, Norton L, Chokkalingam K, et al. Effect of exercise and insulin on SREBP-1c expression in human skeletal muscle: potential roles for the ERK1/2 and Akt signalling pathways. Biochem Soc Trans. 2007;35:1310–1.

    PubMed  CAS  Google Scholar 

  76. Burkart EM, Sambandam N, Han X, et al. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest. 2007;117:3930–9.

    PubMed  CAS  Google Scholar 

  77. Hunter WM, Sukkar MY. Changes in plasma insulin levels during muscular exercise. J Physiol. 1968;196:110P–2.

    PubMed  CAS  Google Scholar 

  78. Hartley LH, Mason JW, Hogan RP, et al. Multiple hormonal responses to prolonged exercise in relation to physical training. J Appl Physiol. 1972;33:607–10.

    PubMed  CAS  Google Scholar 

  79. Felig P, Wahren J, Hendler R, Ahlborg G. Plasma glucagon levels in exercising man. N Engl J Med. 1972;287:184–5.

    PubMed  CAS  Google Scholar 

  80. Ahlborg G, Felig P, Hagenfeldt L, Hendler R, Wahren J. Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J Clin Invest. 1974;53:1080–90.

    PubMed  CAS  Google Scholar 

  81. Hermansen L, Pruett ED, Osnes JB, Giere FA. Blood glucose and plasma insulin in response to maximal exercise and glucose infusion. J Appl Physiol. 1970;29:13–6.

    PubMed  CAS  Google Scholar 

  82. Lins PE, Wajngot A, Adamson U, Vranic M, Efendic S. Minimal increases in glucagon levels enhance glucose production in man with partial hypoinsulinemia. Diabetes. 1983;32:633–6.

    PubMed  CAS  Google Scholar 

  83. Edgerton DS, Cardin S, Emshwiller M, et al. Small increases in insulin inhibit hepatic glucose production solely caused by an effect on glycogen metabolism. Diabetes. 2001;50:1872–82.

    PubMed  CAS  Google Scholar 

  84. Petersen KF, Laurent D, Rothman DL, Cline GW, Shulman GI. Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J Clin Invest. 1998;101:1203–9.

    PubMed  CAS  Google Scholar 

  85. Edgerton DS, Ramnanan CJ, Grueter CA, et al. Effects of insulin on the metabolic control of hepatic gluconeogenesis in vivo. Diabetes. 2009;58:2766–75.

    PubMed  CAS  Google Scholar 

  86. Rivera N, Ramnanan CJ, An Z, et al. Insulin-induced hypoglycemia increases hepatic sensitivity to glucagon in dogs. J Clin Invest. 2010;120:4425–35.

    PubMed  CAS  Google Scholar 

  87. Wasserman DH, Spalding JA, Lacy DB, Colburn CA, Goldstein RE, Cherrington AD. Glucagon is a primary controller of hepatic glycogenolysis and gluconeogenesis during muscular work. Am J Physiol. 1989;257:E108–17.

    PubMed  CAS  Google Scholar 

  88. Cherrington AD, Williams PE, Shulman GI, Lacy WW. Differential time course of glucagon’s effect on glycogenolysis and gluconeogenesis in the conscious dog. Diabetes. 1981;30:180–7.

    PubMed  CAS  Google Scholar 

  89. Wasserman DH, Lickley HL, Vranic M. Interactions between glucagon and other counterregulatory hormones during normoglycemic and hypoglycemic exercise in dogs. J Clin Invest. 1984;74:1404–13.

    PubMed  CAS  Google Scholar 

  90. Miles PD, Finegood DT, Lickley HL, Vranic M. Regulation of glucose turnover at the onset of exercise in the dog. J Appl Physiol. 1992;72:2487–94.

    PubMed  CAS  Google Scholar 

  91. Wasserman DH, Williams PE, Lacy DB, Goldstein RE, Cherrington AD. Exercise-induced fall in insulin and hepatic carbohydrate metabolism during muscular work. Am J Physiol. 1989;256:E500–9.

    PubMed  CAS  Google Scholar 

  92. Wolfe RR, Nadel ER, Shaw JH, Stephenson LA, Wolfe MH. Role of changes in insulin and glucagon in glucose homeostasis in exercise. J Clin Invest. 1986;77:900–7.

    PubMed  CAS  Google Scholar 

  93. Hirsch IB, Marker JC, Smith LJ, et al. Insulin and glucagon in prevention of hypoglycemia during exercise in humans. Am J Physiol. 1991;260:E695–704.

    PubMed  CAS  Google Scholar 

  94. Issekutz Jr B. Effects of glucose infusion on hepatic and muscle glycogenolysis in exercising dogs. Am J Physiol. 1981;240:E451–7.

    PubMed  CAS  Google Scholar 

  95. Jenkins AB, Chisholm DJ, James DE, Ho KY, Kraegen EW. Exercise-induced hepatic glucose output is precisely sensitive to the rate of systemic glucose supply. Metabolism. 1985;34:431–6.

    PubMed  CAS  Google Scholar 

  96. Jeukendrup AE, Wagenmakers AJ, Stegen JH, Gijsen AP, Brouns F, Saris WH. Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. Am J Physiol. 1999;276:E672–83.

    PubMed  CAS  Google Scholar 

  97. Rojdmark S, Bloom G, Chou MC, Jaspan JB, Field JB. Hepatic insulin and glucagon extraction after their augmented secretion in dogs. Am J Physiol. 1978;235:E88–96.

    PubMed  CAS  Google Scholar 

  98. Wasserman DH, Lacy DB, Bracy DP. Relationship between arterial and portal vein immunoreactive glucagon during exercise. J Appl Physiol. 1993;75:724–9.

    PubMed  CAS  Google Scholar 

  99. Camacho RC, Pencek RR, Lacy DB, James FD, Wasserman DH. Suppression of endogenous glucose production by mild hyperinsulinemia during exercise is determined predominantly by portal venous insulin. Diabetes. 2004;53:285–93.

    PubMed  CAS  Google Scholar 

  100. Wasserman DH. Regulation of glucose fluxes during exercise in the postabsorptive state. Annu Rev Physiol. 1995;57:191–218.

    PubMed  CAS  Google Scholar 

  101. Coker RH, Simonsen L, Bulow J, Wasserman DH, Kjaer M. Stimulation of splanchnic glucose production during exercise in humans contains a glucagon-independent component. Am J Physiol Endocrinol Metab. 2001;280:E918–27.

    PubMed  CAS  Google Scholar 

  102. Coker RH, Krishna MG, Lacy DB, Allen EJ, Wasserman DH. Sympathetic drive to liver and nonhepatic splanchnic tissue during heavy exercise. J Appl Physiol. 1997;82:1244–9.

    PubMed  CAS  Google Scholar 

  103. Issekutz Jr B. Role of beta-adrenergic receptors in mobilization of energy sources in exercising dogs. J Appl Physiol. 1978;44:869–76.

    PubMed  Google Scholar 

  104. Wahrenberg H, Engfeldt P, Bolinder J, Arner P. Acute adaptation in adrenergic control of lipolysis during physical exercise in humans. Am J Physiol. 1987;253:E383–90.

    PubMed  CAS  Google Scholar 

  105. Wasserman DH, Lacy DB, Goldstein RE, Williams PE, Cherrington AD. Exercise-induced fall in insulin and increase in fat metabolism during prolonged muscular work. Diabetes. 1989;38:484–90.

    PubMed  CAS  Google Scholar 

  106. Connolly CC, Steiner KE, Stevenson RW, et al. Regulation of glucose metabolism by norepinephrine in conscious dogs. Am J Physiol. 1991;261:E764–72.

    PubMed  CAS  Google Scholar 

  107. Dufour S, Lebon V, Shulman GI, Petersen KF. Regulation of net hepatic glycogenolysis and gluconeogenesis by epinephrine in humans. Am J Physiol Endocrinol Metab. 2009;297:E231–5.

    PubMed  CAS  Google Scholar 

  108. Han XX, Bonen A. Epinephrine translocates GLUT-4 but inhibits insulin-stimulated glucose transport in rat muscle. Am J Physiol. 1998;274:E700–7.

    PubMed  CAS  Google Scholar 

  109. Wasserman DH, Williams PE, Lacy DB, Bracy D, Cherrington AD. Hepatic nerves are not essential to the increase in hepatic glucose production during muscular work. Am J Physiol. 1990;259:E195–203.

    PubMed  CAS  Google Scholar 

  110. Simonson DC, Koivisto V, Sherwin RS, et al. Adrenergic blockade alters glucose kinetics during exercise in insulin-dependent diabetics. J Clin Invest. 1984;73:1648–58.

    PubMed  CAS  Google Scholar 

  111. Howlett K, Galbo H, Lorentsen J, et al. Effect of adrenaline on glucose kinetics during exercise in adrenalectomised humans. J Physiol. 1999;519(Pt 3):911–21.

    PubMed  CAS  Google Scholar 

  112. Calles J, Cunningham JJ, Nelson L, et al. Glucose turnover during recovery from intensive exercise. Diabetes. 1983;32:734–8.

    PubMed  CAS  Google Scholar 

  113. Marliss EB, Simantirakis E, Miles PD, et al. Glucose turnover and its regulation during intense exercise and recovery in normal male subjects. Clin Invest Med. 1992;15:406–19.

    PubMed  CAS  Google Scholar 

  114. Marliss EB, Simantirakis E, Miles PD, et al. Glucoregulatory and hormonal responses to repeated bouts of intense exercise in normal male subjects. J Appl Physiol. 1991;71:924–33.

    PubMed  CAS  Google Scholar 

  115. Purdon C, Brousson M, Nyveen SL, et al. The roles of insulin and catecholamines in the glucoregulatory response during intense exercise and early recovery in insulin-dependent diabetic and control subjects. J Clin Endocrinol Metab. 1993;76:566–73.

    PubMed  CAS  Google Scholar 

  116. Kreisman SH, Halter JB, Vranic M, Marliss EB. Combined infusion of epinephrine and norepinephrine during moderate exercise reproduces the glucoregulatory response of intense exercise. Diabetes. 2003;52:1347–54.

    PubMed  CAS  Google Scholar 

  117. Marker JC, Hirsch IB, Smith LJ, Parvin CA, Holloszy JO, Cryer PE. Catecholamines in prevention of hypoglycemia during exercise in humans. Am J Physiol. 1991;260:E705–12.

    PubMed  CAS  Google Scholar 

  118. Hartley LH. Growth hormone and catecholamine response to exercise in relation to physical training. Med Sci Sports. 1975;7:34–6.

    PubMed  CAS  Google Scholar 

  119. Bak JF, Moller N, Schmitz O. Effects of growth hormone on fuel utilization and muscle glycogen synthase activity in normal humans. Am J Physiol. 1991;260:E736–42.

    PubMed  CAS  Google Scholar 

  120. Tsintzas OK, Williams C, Singh R, Wilson W, Burrin J. Influence of carbohydrate-electrolyte drinks on marathon running performance. Eur J Appl Physiol Occup Physiol. 1995;70:154–60.

    PubMed  CAS  Google Scholar 

  121. Tsintzas OK, Williams C, Wilson W, Burrin J. Influence of carbohydrate supplementation early in exercise on endurance running capacity. Med Sci Sports Exerc. 1996;28:1373–9.

    PubMed  CAS  Google Scholar 

  122. Galbo H, Holst JJ, Christensen NJ. Glucagon and plasma catecholamine responses to graded and prolonged exercise in man. J Appl Physiol. 1975;38:70–6.

    PubMed  CAS  Google Scholar 

  123. Deuster PA, Singh A, Hofmann A, Moses FM, Chrousos GC. Hormonal responses to ingesting water or a carbohydrate beverage during a 2 h run. Med Sci Sports Exerc. 1992;24:72–9.

    PubMed  CAS  Google Scholar 

  124. Fanelli C, Pampanelli S, Epifano L, et al. Relative roles of insulin and hypoglycaemia on induction of neuroendocrine responses to, symptoms of, and deterioration of cognitive function in hypoglycaemia in male and female humans. Diabetologia. 1994;37:797–807.

    PubMed  CAS  Google Scholar 

  125. Mitrakou A, Ryan C, Veneman T, et al. Hierarchy of glycemic thresholds for counterregulatory hormone secretion, symptoms, and cerebral dysfunction. Am J Physiol. 1991;260:E67–74.

    PubMed  CAS  Google Scholar 

  126. Heller SR, Macdonald IA. The measurement of cognitive function during acute hypoglycaemia: experimental limitations and their effect on the study of hypoglycaemia unawareness. Diabet Med. 1996;13:607–15.

    PubMed  CAS  Google Scholar 

  127. Sotsky MJ, Shilo S, Shamoon H. Regulation of counterregulatory hormone secretion in man during exercise and hypoglycemia. J Clin Endocrinol Metab. 1989;68:9–16.

    PubMed  CAS  Google Scholar 

  128. Zinker BA, Allison RG, Lacy DB, Wasserman DH. Interaction of exercise, insulin, and hypoglycemia studied using euglycemic and hypoglycemic insulin clamps. Am J Physiol. 1997;272:E530–42.

    PubMed  CAS  Google Scholar 

  129. Berger CM, Sharis PJ, Bracy DP, Lacy DB, Wasserman DH. Sensitivity of exercise-induced increase in hepatic glucose production to glucose supply and demand. Am J Physiol. 1994;267:E411–21.

    PubMed  CAS  Google Scholar 

  130. Niijima A. Glucose-sensitive afferent nerve fibres in the hepatic branch of the vagus nerve in the guinea-pig. J Physiol. 1982;332:315–23.

    PubMed  CAS  Google Scholar 

  131. Smith D, Pernet A, Reid H, et al. The role of hepatic portal glucose sensing in modulating responses to hypoglycaemia in man. Diabetologia. 2002;45:1416–24.

    PubMed  CAS  Google Scholar 

  132. Donovan CM, Halter JB, Bergman RN. Importance of hepatic glucoreceptors in sympathoadrenal response to hypoglycemia. Diabetes. 1991;40:155–8.

    PubMed  CAS  Google Scholar 

  133. Davis SN, Galassetti P, Wasserman DH, Tate D. Effects of antecedent hypoglycemia on subsequent counterregulatory responses to exercise. Diabetes. 2000;49:73–81.

    PubMed  CAS  Google Scholar 

  134. Galassetti P, Mann S, Tate D, et al. Effects of antecedent prolonged exercise on subsequent counterregulatory responses to hypoglycemia. Am J Physiol Endocrinol Metab. 2001;280:E908–17.

    PubMed  CAS  Google Scholar 

  135. Davis SN, Shavers C, Mosqueda-Garcia R, Costa F. Effects of differing antecedent hypoglycemia on subsequent counterregulation in normal humans. Diabetes. 1997;46:1328–35.

    PubMed  CAS  Google Scholar 

  136. Veneman T, Mitrakou A, Mokan M, Cryer P, Gerich J. Effect of hyperketonemia and hyperlacticacidemia on symptoms, cognitive dysfunction, and counterregulatory hormone responses during hypoglycemia in normal humans. Diabetes. 1994;43:1311–7.

    PubMed  CAS  Google Scholar 

  137. Vettor R, Macor C, Rossi E, Piemonte G, Federspil G. Impaired counterregulatory hormonal and metabolic response to exhaustive exercise in obese subjects. Acta Diabetol. 1997;34:61–6.

    PubMed  CAS  Google Scholar 

  138. Gustafson AB, Farrell PA, Kalkhoff RK. Impaired plasma catecholamine response to submaximal treadmill exercise in obese women. Metabolism. 1990;39:410–7.

    PubMed  CAS  Google Scholar 

  139. Eliakim A, Nemet D, Zaldivar F, et al. Reduced exercise-associated response of the GH-IGF-I axis and catecholamines in obese children and adolescents. J Appl Physiol. 2006;100:1630–7.

    PubMed  CAS  Google Scholar 

  140. Riddell MC. The endocrine response and substrate utilization during exercise in children and adolescents. J Appl Physiol. 2008;105:725–33.

    PubMed  Google Scholar 

  141. Martinez LR, Haymes EM. Substrate utilization during treadmill running in prepubertal girls and women. Med Sci Sports Exerc. 1992;24:975–83.

    PubMed  CAS  Google Scholar 

  142. Steffensen CH, Roepstorff C, Madsen M, Kiens B. Myocellular triacylglycerol breakdown in females but not in males during exercise. Am J Physiol Endocrinol Metab. 2002;282:E634–42.

    PubMed  CAS  Google Scholar 

  143. Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR. Gender differences in substrate for endurance exercise. J Appl Physiol. 1990;68:302–8.

    PubMed  CAS  Google Scholar 

  144. Carter SL, Rennie C, Tarnopolsky MA. Substrate utilization during endurance exercise in men and women after endurance training. Am J Physiol Endocrinol Metab. 2001;280:E898–907.

    PubMed  CAS  Google Scholar 

  145. Horton TJ, Pagliassotti MJ, Hobbs K, Hill JO. Fuel metabolism in men and women during and after long-duration exercise. J Appl Physiol. 1998;85:1823–32.

    PubMed  CAS  Google Scholar 

  146. M’Kaouar H, Peronnet F, Massicotte D, Lavoie C. Gender difference in the metabolic response to prolonged exercise with [13C]glucose ingestion. Eur J Appl Physiol. 2004;92:462–9.

    PubMed  Google Scholar 

  147. Riddell MC, Partington SL, Stupka N, Armstrong D, Rennie C, Tarnopolsky MA. Substrate utilization during exercise performed with and without glucose ingestion in female and male endurance trained athletes. Int J Sport Nutr Exerc Metab. 2003;13:407–21.

    PubMed  CAS  Google Scholar 

  148. Leelayuwat N, Tsintzas K, Patel K, Macdonald IA. Metabolic responses to exercise after carbohydrate loads in healthy men and women. Med Sci Sports Exerc. 2005;37:1721–7.

    PubMed  CAS  Google Scholar 

  149. Nuutila P, Knuuti MJ, Maki M, et al. Gender and insulin sensitivity in the heart and in skeletal muscles. Studies using positron emission tomography. Diabetes. 1995;44:31–6.

    PubMed  CAS  Google Scholar 

  150. Robertson MD, Livesey G, Mathers JC. Quantitative kinetics of glucose appearance and disposal following a 13C-labelled starch-rich meal: comparison of male and female subjects. Br J Nutr. 2002;87:569–77.

    PubMed  CAS  Google Scholar 

  151. Perseghin G, Scifo P, Pagliato E, et al. Gender factors affect fatty acids-induced insulin resistance in nonobese humans: effects of oral steroidal contraception. J Clin Endocrinol Metab. 2001;86:3188–96.

    PubMed  CAS  Google Scholar 

  152. Davis SN, Galassetti P, Wasserman DH, Tate D. Effects of gender on neuroendocrine and metabolic counterregulatory responses to exercise in normal man. J Clin Endocrinol Metab. 2000;85:224–30.

    PubMed  CAS  Google Scholar 

  153. Galassetti P, Mann S, Tate D, Neill RA, Wasserman DH, Davis SN. Effect of morning exercise on counterregulatory responses to subsequent, afternoon exercise. J Appl Physiol. 2001;91:91–9.

    PubMed  CAS  Google Scholar 

  154. Galassetti P, Tate D, Neill RA, Morrey S, Wasserman DH, Davis SN. Effect of sex on counterregulatory responses to exercise after antecedent hypoglycemia in type 1 diabetes. Am J Physiol Endocrinol Metab. 2004;287:E16–24.

    PubMed  CAS  Google Scholar 

  155. Amiel SA, Maran A, Powrie JK, Umpleby AM, Macdonald IA. Gender differences in counterregulation to hypoglycaemia. Diabetologia. 1993;36:460–4.

    PubMed  CAS  Google Scholar 

  156. Pruett ED. Glucose and insulin during prolonged work stress in men living on different diets. J Appl Physiol. 1970;28:199–208.

    PubMed  CAS  Google Scholar 

  157. Lambert EV, St Clair Gibson A, Noakes TD. Complex systems model of fatigue: integrative homoeostatic control of peripheral physiological systems during exercise in humans. Br J Sports Med. 2005;39:52–62.

    PubMed  CAS  Google Scholar 

  158. Nybo L, Secher NH. Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol. 2004;72:223–61.

    PubMed  Google Scholar 

  159. Tsintzas K, Liu R, Williams C, Campbell I, Gaitanos G. The effect of carbohydrate ingestion on performance during a 30-km race. Int J Sport Nutr. 1993;3:127–39.

    PubMed  CAS  Google Scholar 

  160. Tsintzas K, Williams C. Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation. Sports Med. 1998;25:7–23.

    PubMed  CAS  Google Scholar 

  161. McConell G, Fabris S, Proietto J, Hargreaves M. Effect of carbohydrate ingestion on glucose kinetics during exercise. J Appl Physiol. 1994;77:1537–41.

    PubMed  CAS  Google Scholar 

  162. Tabata I, Ogita F, Miyachi M, Shibayama H. Effect of low blood glucose on plasma CRF, ACTH, and cortisol during prolonged physical exercise. J Appl Physiol. 1991;71:1807–12.

    PubMed  CAS  Google Scholar 

  163. Wee SL, Williams C, Tsintzas K, Boobis L. Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J Appl Physiol. 2005;99:707–14.

    PubMed  CAS  Google Scholar 

  164. Nicholas CW, Tsintzas K, Boobis L, Williams C. Carbohydrate-electrolyte ingestion during intermittent high-intensity running. Med Sci Sports Exerc. 1999;31:1280–6.

    PubMed  CAS  Google Scholar 

  165. Yaspelkis 3rd BB, Patterson JG, Anderla PA, Ding Z, Ivy JL. Carbohydrate supplementation spares muscle glycogen during variable-intensity exercise. J Appl Physiol. 1993;75:1477–85.

    PubMed  CAS  Google Scholar 

  166. Coyle EF, Hagberg JM, Hurley BF, Martin WH, Ehsani AA, Holloszy JO. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol. 1983;55:230–5.

    PubMed  CAS  Google Scholar 

  167. Dela F, Mikines KJ, von Linstow M, Secher NH, Galbo H. Effect of training on insulin-mediated glucose uptake in human muscle. Am J Physiol. 1992;263:E1134–43.

    PubMed  CAS  Google Scholar 

  168. Foskett A, Williams C, Boobis L, Tsintzas K. Carbohydrate availability and muscle energy metabolism during intermittent running. Med Sci Sports Exerc. 2008;40:96–103.

    PubMed  CAS  Google Scholar 

  169. Mitchell JB, Costill DL, Houmard JA, Fink WJ, Pascoe DD, Pearson DR. Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J Appl Physiol. 1989;67:1843–9.

    PubMed  CAS  Google Scholar 

  170. Hargreaves M, Briggs CA. Effect of carbohydrate ingestion on exercise metabolism. J Appl Physiol. 1988;65:1553–5.

    PubMed  CAS  Google Scholar 

  171. Yaspelkis 3rd BB, Ivy JL. Effect of carbohydrate supplements and water on exercise metabolism in the heat. J Appl Physiol. 1991;71:680–7.

    PubMed  CAS  Google Scholar 

  172. Ahlborg G, Felig P. Influence of glucose ingestion on fuel-hormone response during prolonged exercise. J Appl Physiol. 1976;41:683–8.

    PubMed  CAS  Google Scholar 

  173. Pfeiffer B, Stellingwerff T, Zaltas E, Hodgson AB, Jeukendrup AE. Carbohydrate oxidation from a drink during running compared with cycling exercise. Med Sci Sports Exerc. 2011;43:327–34.

    PubMed  CAS  Google Scholar 

  174. Tsintzas K, Simpson EJ, Seevaratnam N, Jones S. Effect of exercise mode on blood glucose disposal during physiological hyperinsulinaemia in humans. Eur J Appl Physiol. 2003;89:217–20.

    PubMed  CAS  Google Scholar 

  175. Jeukendrup AE, Killer SC. The myths surrounding pre-exercise carbohydrate feeding. Ann Nutr Metab. 2010;57 Suppl 2:18–25.

    PubMed  CAS  Google Scholar 

  176. Neufer PD, Costill DL, Flynn MG, Kirwan JP, Mitchell JB, Houmard J. Improvements in exercise performance: effects of carbohydrate feedings and diet. J Appl Physiol. 1987;62:983–8.

    PubMed  CAS  Google Scholar 

  177. Schabort EJ, Bosch AN, Weltan SM, Noakes TD. The effect of a preexercise meal on time to fatigue during prolonged cycling exercise. Med Sci Sports Exerc. 1999;31:464–71.

    PubMed  CAS  Google Scholar 

  178. Sherman WM, Brodowicz G, Wright DA, Allen WK, Simonsen J, Dernbach A. Effects of 4 h preexercise carbohydrate feedings on cycling performance. Med Sci Sports Exerc. 1989;21:598–604.

    PubMed  CAS  Google Scholar 

  179. Coyle EF, Jeukendrup AE, Wagenmakers AJ, Saris WH. Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise. Am J Physiol. 1997;273:E268–75.

    PubMed  CAS  Google Scholar 

  180. Coyle EF, Coggan AR, Hemmert MK, Lowe RC, Walters TJ. Substrate usage during prolonged exercise following a preexercise meal. J Appl Physiol. 1985;59:429–33.

    PubMed  CAS  Google Scholar 

  181. Wee SL, Williams C, Gray S, Horabin J. Influence of high and low glycemic index meals on endurance running capacity. Med Sci Sports Exerc. 1999;31:393–9.

    PubMed  CAS  Google Scholar 

  182. Wahren J, Ekberg K. Splanchnic regulation of glucose production. Annu Rev Nutr. 2007;27:329–45.

    PubMed  CAS  Google Scholar 

  183. Tsintzas K, Jewell K, Kamran M, et al. Differential regulation of metabolic genes in skeletal muscle during starvation and refeeding in humans. J Physiol. 2006;575:291–303.

    PubMed  CAS  Google Scholar 

  184. Davis SN, Fowler S, Costa F. Hypoglycemic counterregulatory responses differ between men and women with type 1 diabetes. Diabetes. 2000;49:65–72.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Tsintzas B.Sc., M.Sc., Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Tsintzas, K., MacDonald, I.A. (2012). Endocrine and Metabolic Responses to Exercise. In: Type 1 Diabetes. Springer, London. https://doi.org/10.1007/978-0-85729-754-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-754-9_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-753-2

  • Online ISBN: 978-0-85729-754-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics