Advertisement

Recognition of Actions

  • Matti Pietikäinen
  • Abdenour Hadid
  • Guoying Zhao
  • Timo Ahonen
Part of the Computational Imaging and Vision book series (CIVI, volume 40)

Abstract

Methods for analyzing humans and their actions from monocular or multi-view video data are required in many different applications. In this chapter simple LBP-based approaches for action recognition are introduced. The methods perform very favorably compared to the state-of-the-art for test video sequences commonly used in the research community.

Keywords

Action Recognition Local Binary Pattern Interest Point Static Texture Temporal Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: Proc. International Conference on Computer Vision, vol. 2, pp. 1395–1402 (2005) Google Scholar
  2. 2.
    Bobick, A., Davis, J.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001) CrossRefGoogle Scholar
  3. 3.
    Boiman, O., Irani, M.: Similarity by composition. In: Proc. Neural Information Processing Systems Conference, p. 8 (2006) Google Scholar
  4. 4.
    Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: Proc. International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72 (2005) CrossRefGoogle Scholar
  5. 5.
    Gavrila, D.M.: The visual analysis of human movement: A survey. Comput. Vis. Image Underst. 73(3), 82–98 (1999) MATHCrossRefGoogle Scholar
  6. 6.
    Heikkilä, M., Pietikäinen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006) CrossRefGoogle Scholar
  7. 7.
    Ikizler, N., Duygulu, P.: Human action recognition using distribution of oriented rectangular patches. In: Proc. ICCV Workshop on Human Motion Understanding, Modeling, Capture and Animation, pp. 271–284 (2007) CrossRefGoogle Scholar
  8. 8.
    Ke, Y., Sukthankar, R., Hebert, M.: Efficient visual event detection using volumetric features. In: Proc. International Conference on Computer Vision, pp. 165–173 (2005) Google Scholar
  9. 9.
    Ke, Y., Sukthankar, R., Hebert, M.: Spatio-temporal shape and flow correlation for action recognition. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007) Google Scholar
  10. 10.
    Kellokumpu, V., Zhao, G., Pietikäinen, M.: Human activity recognition using a dynamic texture based method. In: Proc. British Machine Vision Conference (2008) Google Scholar
  11. 11.
    Kellokumpu, V., Zhao, G., Pietikäinen, M.: Texture based description of movements for activity analysis. In: Proc. International Conference on Computer Vision Theory and Applications, vol. 1, pp. 206–213 (2008) Google Scholar
  12. 12.
    Kellokumpu, V., Zhao, G., Pietikäinen, M.: Dynamic texture based gait recognition. In: Advances in Biometrics. Lecture Notes in Computer Science, vol. 5558, pp. 1000–1009. Springer, Berlin (2009) CrossRefGoogle Scholar
  13. 13.
    Kellokumpu, V., Zhao, G., Pietikäinen, M.: Recognition of human actions using texture descriptors. Machine Vision and Applications (2011). doi: 10.1007/s00138-009-0233-8 Google Scholar
  14. 14.
    Kim, K., Wong, S., Cipolla, R.: Tensor canonical correlation analysis for action classification. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007) Google Scholar
  15. 15.
    Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.S.: Background modeling and subtraction by codebook construction. In: Proc. IEEE International Conference on Image Processing, pp. 3061–3064 (2004) Google Scholar
  16. 16.
    Kobyashi, T., Otsu, N.: Action and simultaneous multiple-person identification using cubic higher-order auto-correlation. In: Proc. International Conference on Pattern Recognition, vol. 4, pp. 741–744 (2004) Google Scholar
  17. 17.
    Laptev, I., Lindeberg, T.: Space-time interest points. In: Proc. International Conference on Computer Vision, vol. 1, pp. 432–439 (2003) CrossRefGoogle Scholar
  18. 18.
    Ma, Y., Cisar, P.: Event detection using local binary pattern based dynamic textures. In: Proc. CVPR Workshop on International Conference on Spoken Language Proceedings, pp. 38–44 (2009) Google Scholar
  19. 19.
    Mattivi, R., Shao, L.: Human action recognition using LBP-TOP as sparse spatio-temporal feature descriptor. In: Proc. International Conference on Computer Analysis of Images and Patterns, pp. 740–747 (2009) CrossRefGoogle Scholar
  20. 20.
    Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104, 90–126 (2006) CrossRefGoogle Scholar
  21. 21.
    Niebles, J.C., Fei-Fei, L.: A hierarchical model of shape and appearance for human action classification. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007) Google Scholar
  22. 22.
    Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vis. 79(3), 299–318 (2008) CrossRefGoogle Scholar
  23. 23.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–285 (1989) CrossRefGoogle Scholar
  24. 24.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local SVM approach. In: Proc. International Conference on Pattern Recognition, pp. 32–36 (2004) Google Scholar
  25. 25.
    Scovanner, P., Ali, S., Shah, M.: A 3-dimensional SIFT descriptor and its application to action recognition. In: Proc. ACM Multimedia, pp. 357–360 (2007) Google Scholar
  26. 26.
    Shao, L., Mattivi, R.: Feature detector and descriptor evaluation in human action recognition. In: Proceedings of the ACM International Conference on Image and Video Retrieval, pp. 477–484 (2010) CrossRefGoogle Scholar
  27. 27.
    Shechtman, E., Irani, M.: Space-time behavior based correlation. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 405–412 (2005) Google Scholar
  28. 28.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proc. IEEE Conference Computer Vision and Pattern Recognition, vol. 2, pp. 246–252 (1999) Google Scholar
  29. 29.
    Wang, L., Suter, D.: Recognizing human activities from silhouettes: Motion subspace and factorial discriminative graphical model. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007) Google Scholar
  30. 30.
    Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. Comput. Vis. Image Underst. 104(2–3), 249–257 (2006) CrossRefGoogle Scholar
  31. 31.
    Wong, S., Kim, T., Cipolla, R.: Learning motion categories using both semantic and structural information. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–6 (2007) Google Scholar
  32. 32.
    Yeffet, L., Wolf, L.: Local trinary patterns for human action recognition. In: Proc. International Conference on Computer Vision, pp. 492–497 (2009) Google Scholar
  33. 33.
    Yilmaz, A., Shah, M.: Action sketch: A novel action representation. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 984–989 (2005) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Matti Pietikäinen
    • 1
  • Abdenour Hadid
    • 1
  • Guoying Zhao
    • 1
  • Timo Ahonen
    • 2
  1. 1.Machine Vision Group, Department of Computer Science and EngineeringUniversity of OuluOuluFinland
  2. 2.Nokia Research CenterPalo AltoUSA

Personalised recommendations