Advertisement

Recognition and Segmentation of Dynamic Textures

  • Matti Pietikäinen
  • Abdenour Hadid
  • Guoying Zhao
  • Timo Ahonen
Part of the Computational Imaging and Vision book series (CIVI, volume 40)

Abstract

In this chapter, recognition and segmentation of dynamic textures, i.e. textures with motion, using spatiotemporal LBP operators is considered. Excellent recognition results are obtained for different test databases providing state-of-the-art performance. The segmentation method extends the unsupervised segmentation method presented in Chap.  4 into spatiotemporal domain. It provides very promising results with less computational complexity than most other methods.

Keywords

Support Vector Machine Video Sequence Local Binary Pattern Orthogonal Plane Dynamic Texture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Amiaz, T., Fazekas, S., Chetverikov, D., Kiryati, N.: Detecting regions of dynamic texture. In: First International Conference on Scale Space and Variational Methods in Computer Vision, pp. 848–859 (2007) CrossRefGoogle Scholar
  2. 2.
    Chan, A., Vasconcelos, N.: Classifying video with kernel dynamic textures. Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–6 (2007) Google Scholar
  3. 3.
    Chan, A.B., Vasconcelos, N.: Modeling, clustering, and segmenting video with mixtures of dynamic texture. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 909–926 (2008) CrossRefGoogle Scholar
  4. 4.
    Chen, J., Zhao, G., Pietikäinen, M.: Unsupervised dynamic texture segmentation using local spatiotemporal descriptors. In: Proc. International Conference on Pattern Recognition, pp. 1–4 (2008) Google Scholar
  5. 5.
    Chen, J., Zhao, G., Pietikäinen, M.: An improved local descriptor and threshold learning for unsupervised dynamic texture segmentation. In: Proc. ICCV Workshop on Machine Learning for Vision-Based Motion Analysis, pp. 460–467 (2009) Google Scholar
  6. 6.
    Chetverikov, D., Péteri, R.: A brief survey of dynamic texture description and recognition. In: Proc. International Conference on Computer Recognition Systems, pp. 17–26 (2005) CrossRefGoogle Scholar
  7. 7.
    Cooper, L., Liu, J., Huang, K.: Spatial segmentation of temporal texture using mixture linear models. In: Proc. ICCV Workshop on Dynamical Vision (2005) Google Scholar
  8. 8.
    Cremers, D., Soatto, S.: Motion competition: A variational approach to piecewise parametric motion segmentation. Int. J. Comput. Vis. 62(3), 249–265 (2005) CrossRefGoogle Scholar
  9. 9.
    Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic texture segmentation. In: Proc. International Conference on Computer Vision, pp. 1236–1242 (2003) CrossRefGoogle Scholar
  10. 10.
    Fablet, R., Bouthemy, P.: Motion recognition using nonparametric image motion models estimated from temporal and multiscale co-occurrence statistics. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1619–1624 (2003) CrossRefGoogle Scholar
  11. 11.
    Fazekas, S., Chetverikov, D.: Normal versus complete flow in dynamic texture recognition: A comparative study. In: Proc. International Workshop on Texture Analysis and Synthesis, pp. 37–42 (2005) Google Scholar
  12. 12.
    Ghoreyshi, A., Vidal, R.: Segmenting dynamic textures with Ising descriptors, ARX models and level sets. In: Dynamical Vision. Lecture Notes in Computer Science, vol. 4358, pp. 127–141 (2007) CrossRefGoogle Scholar
  13. 13.
    Murray, D.W., Buxton, B.F.: Scene segmentation from visual motion using global optimization. IEEE Trans. Pattern Anal. Mach. Intell. 9(2), 220–228 (1987) CrossRefGoogle Scholar
  14. 14.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002) CrossRefGoogle Scholar
  15. 15.
    Otsuka, K., Horikoshi, T., Suzuki, S., Fujii, M.: Feature extraction of temporal texture based on spatiotemporal motion trajectory. In: Proc. International Conference on Pattern Recognition, vol. 2, pp. 1047–1051 (1998) Google Scholar
  16. 16.
    Peh, C.H., Cheong, L.-F.: Synergizing spatial and temporal texture. IEEE Trans. Image Process. 11, 1179–1191 (2002) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Péteri, R., Chetverikov, D.: Dynamic texture recognition using normal flow and texture regularity. In: Proc. Iberian Conference on Pattern Recognition and Image Analysis, pp. 223–230 (2005) CrossRefGoogle Scholar
  18. 18.
    Polana, R., Nelson, R.: Temporal texture and activity recognition. In: Motion-Based Recognition, pp. 87–115 (1997) CrossRefGoogle Scholar
  19. 19.
    Ravichandran, A., Chaudhry, R., Vidal, R.: View-invariant dynamic texture recognition using a bag of dynamical systems. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–6 (2009) Google Scholar
  20. 20.
    Saisan, P., Doretto, G., Wu, Y.N., Soatto, S.: Dynamic texture recognition. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 58–63 (2001) Google Scholar
  21. 21.
    Schodl, A., Essa, I.: Controlled animation of video sprites. In: Proc. ACM SIGGRAPH, 2002 Google Scholar
  22. 22.
    Szummer, M., Picard, R.W.: Temporal texture modeling. In: Proc. IEEE International Conference on Image Processing, vol. 3, pp. 823–826 (1996) CrossRefGoogle Scholar
  23. 23.
    Vidal, R., Ravichandran, A.: Optical flow estimation and segmentation of multiple moving dynamic textures. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 516–521 (2005) Google Scholar
  24. 24.
    Woolfe, F., Fitzgibbon, A.: Shift-invariant dynamic texture recognition. In: Proc. European Conference on Computer Vision, pp. 549–562 (2006) Google Scholar
  25. 25.
    Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007) CrossRefGoogle Scholar
  26. 26.
    Zhao, G., Pietikäinen, M.: Dynamic texture recognition using volume local binary patterns. In: Dynamical Vision. Lecture Notes in Computer Science, vol. 4358, pp. 165–177. Springer, Berlin (2007) CrossRefGoogle Scholar
  27. 27.
    Zhao, G., Ahonen, T., Matas, J., Pietikäinen, M.: Rotation invariant image and video description with local binary pattern features. Under review (2011) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Matti Pietikäinen
    • 1
  • Abdenour Hadid
    • 1
  • Guoying Zhao
    • 1
  • Timo Ahonen
    • 2
  1. 1.Machine Vision Group, Department of Computer Science and EngineeringUniversity of OuluOuluFinland
  2. 2.Nokia Research CenterPalo AltoUSA

Personalised recommendations