Advertisement

Local Binary Patterns for Still Images

  • Matti Pietikäinen
  • Abdenour Hadid
  • Guoying Zhao
  • Timo Ahonen
Part of the Computational Imaging and Vision book series (CIVI, volume 40)

Abstract

This chapter provides an in-depth description of the LBP operator in spatial image domain. The generic LBP operator, and its rotation-invariant and multiscale versions are introduced. The use of complementary contrast information is also discussed. The success of LBP methods in various computer vision problems and applications has inspired much new research on different variants. The basic LBP has also some problems that need to be addressed. Therefore, several extensions and modifications of LBP have been proposed to increase its robustness and discriminative power.

Keywords

Local Binary Pattern Center Pixel Local Binary Pattern Feature Local Binary Pattern Operator Local Ternary Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ahonen, T., Pietikäinen, M.: Soft histograms for local binary patterns. In: Proc. Finnish Signal Processing Symposium, p. 4 (2007) Google Scholar
  2. 2.
    Ahonen, T., Pietikäinen, M.: Image description using joint distribution of filter bank responses. Pattern Recognit. Lett. 30(4), 368–376 (2009) CrossRefGoogle Scholar
  3. 3.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 3021, pp. 469–481. Springer, Berlin (2004) Google Scholar
  4. 4.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006) CrossRefGoogle Scholar
  5. 5.
    Ahonen, T., Rahtu, E., Ojansivu, V., Heikkilä, J.: Recognition of blurred faces using local phase quantization. In: Proc. International Conference on Pattern Recognition, pp. 1–4 (2008) Google Scholar
  6. 6.
    Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram Fourier features. In: Scandinavian Conference on Image Analysis. Lecture Notes in Computer Science, vol. 5575, pp. 61–70. Springer, Berlin (2009) CrossRefGoogle Scholar
  7. 7.
    Chan, C.H., Kittler, J.V., Messer, K.: Multispectral local binary pattern histogram for component-based color face verification. In: Proc. IEEE Conference on Biometrics: Theory, Applications and Systems, pp. 1–7 (2007) Google Scholar
  8. 8.
    Chan, C.-H., Kittler, J., Messer, K.: Multi-scale local binary pattern histograms for face recognition. In: Proc. International Conference on Biometrics, pp. 809–818 (2007) Google Scholar
  9. 9.
    Chen, J., Zhao, G., Pietikäinen, M.: An improved local descriptor and threshold learning for unsupervised dynamic texture segmentation. In: Proc. ICCV Workshop on Machine Learning for Vision-based Motion Analysis, pp. 460–467 (2009) Google Scholar
  10. 10.
    Chen, J., Shan, S., He, C., Zhao, G., Pietikäinen, M., Chen, X., Gao, W.: WLD: A robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1705–1720 (2010) CrossRefGoogle Scholar
  11. 11.
    Connah, D., Finlayson, G.D.: Using local binary pattern operators for colour constant image indexing. In: Proc. European Conference on Color in Graphics, Imaging, and Vision, p. 5 (2006) Google Scholar
  12. 12.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 886–893 (2005) Google Scholar
  13. 13.
    Fröba, B., Ernst, A.: Face detection with the modified census transform. In: Proc. International Conference on Face and Gesture Recognition, pp. 91–96 (2004) Google Scholar
  14. 14.
    Fu, X., Wei, W.: Centralized binary patterns embedded with image Euclidean distance for facial expression recognition. In: Proc. International Conference on Natural Computation, vol. 4, pp. 115–119 (2008) Google Scholar
  15. 15.
    Guo, Y., Zhao, G., Pietikäinen, M., Xu, Z.: Descriptor learning based on Fisher separation criterion for texture classification. In: Proc. Asian Conference on Computer Vision, pp. 1491–1500 (2010) Google Scholar
  16. 16.
    Guo, Z.H., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Guo, Z.H., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 43(3), 706–719 (2010) MATHCrossRefGoogle Scholar
  18. 18.
    Guo, Z.H., Zhang, L., Zhang, D., Zhang, S.: Rotation invariant texture classification using adaptive LBP with directional statistical features. In: Proc. International Conference on Image Processing, pp. 285–288 (2010) Google Scholar
  19. 19.
    Hafiane, A., Seetharaman, G., Zavidovique, B.: Median binary pattern for texture classification. In: Proc. International Conference on Image Analysis and Recognition, pp. 387–398 (2007) CrossRefGoogle Scholar
  20. 20.
    He, C., Ahonen, T., Pietikäinen, M.: A Bayesian local binary pattern texture descriptor. In: Proc. International Conference on Pattern Recognition, pp. 1–4 (2008) Google Scholar
  21. 21.
    He, Y., Sang, N., Gao, C.: Pyramid-based multi-structure local binary pattern for texture classification. In: Proc. Asian Conference on Computer Vision, vol. 3, pp. 1435–1446 (2010) Google Scholar
  22. 22.
    Heikkilä, M., Pietikäinen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006) CrossRefGoogle Scholar
  23. 23.
    Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognit. 42(3), 425–436 (2009) MATHCrossRefGoogle Scholar
  24. 24.
    Ho An, K., Jin Chung, M.: Cognitive face analysis system for future interactive TV. IEEE Trans. Consum. Electron. 55(4), 2271–2279 (2009) CrossRefGoogle Scholar
  25. 25.
    Huang, D., Wang, Y., Wang, Y.: A robust method for near infrared face recognition based on extended local binary pattern. In: Advances in Visual Computing. Lecture Notes in Computer Science, vol. 4842, pp. 437–446. Springer, Berlin (2007) CrossRefGoogle Scholar
  26. 26.
    Huang, X., Li, S.Z., Wang, Y.: Shape localization based on statistical method using extended local binary pattern. In: Proc. International Conference on Image and Graphics, pp. 184–187 (2004) CrossRefGoogle Scholar
  27. 27.
    Huang, Y., Wang, Y., Tan, T.: Combining statistics of geometrical and correlative features for 3d face recognition. In: Proc. British Machine Vision Conference, pp. 879–888 (2006) Google Scholar
  28. 28.
    Hussain, S., Triggs, B.: Feature sets and dimensionality reduction for visual object detection. In: Proc. British Machine Vision Conference, pp. 112.1–112.10 (2010) Google Scholar
  29. 29.
    Iakovidis, D.K., Keramidas, E., Maroulis, D.: Fuzzy local binary patterns for ultrasound texture characterization. In: Proc. International Conference on Image Analysis and Recognition, pp. 750–759 (2008) CrossRefGoogle Scholar
  30. 30.
    Jin, H., Liu, Q., Lu, H., Tong, X.: Face detection using improved LBP under Bayesian framework. In: Proc. International Conference on Image and Graphics, pp. 306–309 (2004) Google Scholar
  31. 31.
    Kellokumpu, V., Zhao, G., Pietikäinen, M.: Dynamic texture based gait recognition. In: Advances in Biometrics. Lecture Notes in Computer Science, vol. 5558, pp. 1000–1009. Springer, Berlin (2009) CrossRefGoogle Scholar
  32. 32.
    Kullback, S.: Information Theory and Statistics. Dover, New York (1968) Google Scholar
  33. 33.
    Lahdenoja, O., Laiho, M., Paasio, A.: Reducing the feature vector length in local binary pattern based face recognition. In: Proc. International Conference on Image Processing, vol. 2, pp. 914–917 (2005) Google Scholar
  34. 34.
    Lategahn, H., Gross, S., Stehle, T., Aach, T.: Texture classification by modeling joint distributions of local patterns with Gaussian mixtures. IEEE Trans. Image Process. 19, 1548–1557 (2010) MathSciNetCrossRefGoogle Scholar
  35. 35.
    Li, B., Meng, M.Q.-H.: Texture analysis for ulcer detection in capsule endoscopy images. Image Vis. Comput. 27, 1336–1342 (2009) CrossRefGoogle Scholar
  36. 36.
    Li, S.Z., Zhao, C., Zhu, X., Lei, Z.: Learning to fuse 3D+2D based face recognition at both feature and decision levels. In: Proc. IEEE International Workshop on Analysis and Modeling of Faces and Gestures, pp. 44–54 (2005) CrossRefGoogle Scholar
  37. 37.
    Li, X., Hu, W., Zhang, Z., Wang, H.: Heat kernel based local binary pattern for face representation. IEEE Signal Process. Lett. 17, 308–311 (2010) CrossRefGoogle Scholar
  38. 38.
    Liao, S., Chung, A.C.S.: Face recognition by using enlongated local binary patterns with average maximum distance gradient magnitude. In: Computer Vision—ACCV 2007. Lecture Notes in Computer Science, vol. 4844, pp. 672–679. Springer, Berlin (2007) CrossRefGoogle Scholar
  39. 39.
    Liao, S., Law, M., Chung, C.S.: Dominant local binary patterns for texture classification. IEEE Trans. Image Process. 18, 1107–1118 (2009) CrossRefGoogle Scholar
  40. 40.
    Liao, S., Zhao, G., Kellokumpu, V., Pietikäinen, M., Li, S.Z.: Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, p. 8 (2010) Google Scholar
  41. 41.
    Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: Proc. International Conference on Biometrics, pp. 828–837 (2007) Google Scholar
  42. 42.
    Mäenpää, T.: The local binary pattern approach to texture analysis—extensions and applications. PhD thesis, Acta Universitatis Ouluensis C 187, University of Oulu (2003) Google Scholar
  43. 43.
    Mäenpää, T., Pietikäinen, M.: Multi-scale binary patterns for texture analysis. In: Scandinavian Conference on Image Analysis. Lecture Notes in Computer Science, vol. 2749, pp. 885–892. Springer, Berlin (2003) CrossRefGoogle Scholar
  44. 44.
    Mäenpää, T., Pietikäinen, M.: Classification with color and texture: Jointly or separately? Pattern Recognit. 37, 1629–1640 (2004) CrossRefGoogle Scholar
  45. 45.
    Mäenpää, T., Pietikäinen, M.: Texture analysis with local binary patterns. In: Chen, C.H., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 3rd edn., pp. 197–216. World Scientific, Singapore (2005) CrossRefGoogle Scholar
  46. 46.
    Mäenpää, T., Ojala, T., Pietikäinen, M., Soriano, M.: Robust texture classification by subsets of local binary patterns. In: Proc. 15th International Conference on Pattern Recognition, vol. 3, pp. 947–950 (2000) Google Scholar
  47. 47.
    Maturana, D., Soto, A., Mery, D.: Face recognition with decision tree-based local binary patterns. In: Proc. Asian Conference on Computer Vision, 2010 Google Scholar
  48. 48.
    Mu, Y.D., Yan, S.C., Liu, Y., Huang, T., Zhou, B.F.: Discriminative local binary patterns for human detection in personal album. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008) Google Scholar
  49. 49.
    Nanni, L., Brahnam, S., Lumini, A.: A local approach based on a local binary patterns variant texture descriptor. Expert Syst. Appl. 37, 7888–7894 (2010) CrossRefGoogle Scholar
  50. 50.
    Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49, 117–125 (2010) CrossRefGoogle Scholar
  51. 51.
    Ojala, T., Pietikäinen, M.: Unsupervised texture segmentation using feature distributions. Pattern Recognit. 32, 477–486 (1999) CrossRefGoogle Scholar
  52. 52.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 29(1), 51–59 (1996) CrossRefGoogle Scholar
  53. 53.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002) CrossRefGoogle Scholar
  54. 54.
    Ojala, T., Valkealahti, K., Oja, E., Pietikäinen, M.: Texture discrimination with multidimensional distributions of signed gray-level differences. Pattern Recognit. 34(3), 727–739 (2001) MATHCrossRefGoogle Scholar
  55. 55.
    Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Proc. International Conference on Image and Signal Processing, pp. 236–243 (2008) Google Scholar
  56. 56.
    Petpon, A., Srisuk, S.: Face recognition with local line binary pattern. In: Proc. International Conference on Image and Graphics, pp. 533–539 (2009) Google Scholar
  57. 57.
    Pietikäinen, M., Ojala, T., Xu, Z.: Rotation-invariant texture classification using feature distributions. Pattern Recognit. 33, 43–52 (2000) CrossRefGoogle Scholar
  58. 58.
    Porebski, A., Vandenbroucke, N., Macaire, L.: Haralick feature extraction from LBP images for color texture classification. In: Proc. Workshop on Image Processing Theory, Tools and Applications, pp. 1–8 (2008) Google Scholar
  59. 59.
    Raja, Y., Gong, S.: Sparse multiscale local binary patterns. In: Proc. British Machine Vision Conference, 2006 Google Scholar
  60. 60.
    Roy, A., Marcel, S.: Haar local binary pattern feature for fast illumination invariant face detection. In: Proc. British Machine Vision Conference, 2009 Google Scholar
  61. 61.
    Shan, C., Gritti, T.: Learning discriminative LBP-histogram bins for facial expression recognition. In: Proc. British Machine Vision Conference, p. 10 (2008) Google Scholar
  62. 62.
    Shan, C., Gong, S., Mcowan, P.: Appearance manifold of facial expression. In: Proc. IEEE ICCV Workshop on Human-Computer Interaction (HCI), pp. 221–230 (2005) Google Scholar
  63. 63.
    Shan, S., Zhang, W., Su, Y., Chen, X., Gao, W.: Ensemble of piecewise FDA based on spatial histograms of local (Gabor) binary patterns for face recognition. In: Proc. International Conference on Pattern Recognition, vol. 4, pp. 606–609 (2006) Google Scholar
  64. 64.
    Smith, R.S., Windeatt, T.: Facial expression detection using filtered local binary pattern features with ECOC classifiers and platt scaling. In: JMLR Workshop on Applications of Pattern Analysis, vol. 11, pp. 111–118 (2010) Google Scholar
  65. 65.
    Sokal, R.R., Rohlf, F.J.: Biometry. Freeman, New York (1969) Google Scholar
  66. 66.
    Sun, N., Zheng, W., Sun, C., Zou, C., Zhao, L.: Gender classification based on boosting local binary pattern. In: Proc. International Symposium on Neural Networks, pp. 194–201 (2006) Google Scholar
  67. 67.
    Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991) CrossRefGoogle Scholar
  68. 68.
    Tan, N., Huang, L., Liu, C.: A new probabilistic local binary pattern for face verification. In: Proc. IEEE International Conference on Image Processing, pp. 1237–1240 (2009) Google Scholar
  69. 69.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Analysis and Modeling of Faces and Gestures. Lecture Notes in Computer Science, vol. 4778, pp. 168–182. Springer, Berlin (2007) CrossRefGoogle Scholar
  70. 70.
    Tan, X., Triggs, B.: Fusing Gabor and LBP feature sets for kernel-based face recognition. In: Analysis and Modeling of Faces and Gestures. Lecture Notes in Computer Science, vol. 4778, pp. 235–249. Springer, Berlin (2007) CrossRefGoogle Scholar
  71. 71.
    Trefny, J., Matas, J.: Extended set of local binary patterns for rapid object detection. In: Proc. Computer Vision Winter Workshop, pp. 1–7 (2010) Google Scholar
  72. 72.
    Turtinen, M., Pietikäinen, M.: Contextual analysis of textured scene images. In: Proc. British Machine Vision Conference, pp. 849–858 (2006) Google Scholar
  73. 73.
    Varma, M., Zisserman, A.: A statistical approach to materials classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31, 2032–2047 (2009) CrossRefGoogle Scholar
  74. 74.
    Wang, L., He, D.C.: Texture classification using texture spectrum. Pattern Recognit. 23, 905–910 (1990) CrossRefGoogle Scholar
  75. 75.
    Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling. In: Proc. International Conference on Computer Vision, pp. 32–39 (2009) Google Scholar
  76. 76.
    Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. In: Proc. ECCV Workshop on Faces in Real-Life Images, pp. 1–14 (2008) Google Scholar
  77. 77.
    Yan, S., Shan, S., Chen, X., Gao, W.: Locally assembled binary (LAB) feature with feature-centric cascade for fast and accurate face detection. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2008) Google Scholar
  78. 78.
    Yang, H., Wang, Y.: A LBP-based face recognition method with Hamming distance constraint. In: Proc. International Conference on Image and Graphics, pp. 645–649 (2007) Google Scholar
  79. 79.
    Yao, C.H., Chen, S.Y.: Retrieval of translated, rotated and scaled color textures. Pattern Recognit. 36(4), 913–929 (2003) MathSciNetCrossRefGoogle Scholar
  80. 80.
    Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Proc. 12th Int. Conf. on Machine Learning, pp. 856–863 (2003) Google Scholar
  81. 81.
    Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533–544 (2010) MathSciNetCrossRefGoogle Scholar
  82. 82.
    Zhang, G., Huang, X., Li, S., Wang, Y., Wu, X.: Boosting local binary pattern (LBP)-based face recognition. In: Proc. Advances in Biometric Person Authentication, pp. 179–186 (2005) Google Scholar
  83. 83.
    Zhang, L., Chu, R.F., Xiang, S.M., Liao, S.C., Li, S.Z.: Face detection based on multi-block LBP representation. In: Proc. IEEE International Conference on Biometrics, pp. 11–18 (2007) Google Scholar
  84. 84.
    Zhang, L., Zhang, L., Guo, Z., Zhang, D.: Monogenic-LBP: A new approach for rotation invariant texture classification. In: Proc. International Conference on Image Processing, pp. 2677–2680 (2010) Google Scholar
  85. 85.
    Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition. In: Proc. International Conference on Computer Vision, vol. 1, pp. 786–791 (2005) Google Scholar
  86. 86.
    Zhao, D., Lin, Z., Tang, X.: Contextual distance for data perception. In: Proc. International Conference on Computer Vision, pp. 1–8 (2007) Google Scholar
  87. 87.
    Zhao, D., Lin, Z., Tang, X.: Laplacian PCA and its applications. In: Proc. International Conference on Computer Vision, pp. 1–8 (2007) Google Scholar
  88. 88.
    Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007) CrossRefGoogle Scholar
  89. 89.
    Zhao, G., Ahonen, T., Matas, J., Pietikäinen, M.: Rotation invariant image and video description with local binary pattern features. Under review (2011) Google Scholar
  90. 90.
    Zhao, S., Gao, Y., Zhang, B.: Sobel-LBP. In: Proc. International Conference on Image Processing, pp. 2144–2147 (2008) Google Scholar
  91. 91.
    Zhou, H., Wang, R., Wang, C.: A novel extended local-binary-pattern operator for texture analysis. Inf. Sci. 178, 4314–4325 (2008) MATHCrossRefGoogle Scholar
  92. 92.
    Zhu, C., Bichot, C.-E., Chen, L.: Multi-scale color local binary patterns for visual object classes recognition. In: Proc. International Conference on Pattern Recognition, pp. 3065–3068 (2010) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Matti Pietikäinen
    • 1
  • Abdenour Hadid
    • 1
  • Guoying Zhao
    • 1
  • Timo Ahonen
    • 2
  1. 1.Machine Vision Group, Department of Computer Science and EngineeringUniversity of OuluOuluFinland
  2. 2.Nokia Research CenterPalo AltoUSA

Personalised recommendations