LBP in Different Applications

  • Matti Pietikäinen
  • Abdenour Hadid
  • Guoying Zhao
  • Timo Ahonen
Part of the Computational Imaging and Vision book series (CIVI, volume 40)


Due to its excellent performance, robustness to illumination variations and computational efficiency the LBP has been used in a wide variety of different image analysis problems and applications around the world. Among the most important areas of application are face analysis, biometrics, biomedical image analysis, industrial inspection and video analysis. This chapter presents a brief introduction to some representative papers from different application areas.


Local Binary Pattern Capsule Endoscope Facial Expression Recognition Equal Error Rate Video Shot 


  1. 1.
    Abbo, A.A., Jeanne, V., Ouwerkerk, M., Shan, C., Braspenning, R., Ganesh, A., Corporaal, H.: Mapping facial expression recognition algorithms on a low-power smart camera. In: Proc. ACM/IEEE International Conference on Distributed Smart Cameras, pp. 1–7 (2008) Google Scholar
  2. 2.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006) CrossRefGoogle Scholar
  3. 3.
    Avcibas, I., Kharrazi, M., Memon, N., Sankur, B.: Image steganalysis with binary similarity measures. EURASIP J. Appl. Signal Process. 17, 553–566 (2005) Google Scholar
  4. 4.
    Celiktutan, O., Sankur, B., Avcibas, I.: Blind identification of source cell-phone model. IEEE Trans. Inf. Forensics Secur. 3, 553–566 (2008) CrossRefGoogle Scholar
  5. 5.
    Cui, J., Wen, F., Xiao, R., Tian, Y., Tang, X.: EasyAlbum: An interactive photo annotation system based on face clustering and re-ranking. In: Proc. CM CHI 2007 Conference on Human Factors in Computing Systems, pp. 367–376 (2007) Google Scholar
  6. 6.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 886–893 (2005) Google Scholar
  7. 7.
    Fuchs, T.J., Wild, P.J., Moch, H., Buhmann, J.M.: Computational pathology analysis of tissue microarrays predicts survival of renal cell carcinoma patients. In: Proc. International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 1–8 (2008) Google Scholar
  8. 8.
    Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 260–267 (2006) Google Scholar
  9. 9.
    Grabner, H., Nguyen, T.T., Gruber, B., Bischof, H.: On-line boosting-based car detection from aerial images. ISPRS J. Photogramm. Remote Sens. 63(3), 382–396 (2008) CrossRefGoogle Scholar
  10. 10.
    Guo, Y., Zhao, G., Chen, J., Pietikäinen, M., Xu, Z.: Dynamic texture synthesis using a spatial temporal descriptor. In: Proc. IEEE International Conference on Image Processing, pp. 2277–2280 (2009) Google Scholar
  11. 11.
    Hadid, A., Heikkilä, J.Y., Silven, O., Pietikäinen, M.: Face and eye detection for person authentication in mobile phones. In: Proc. ACM/IEEE International Conference on Distributed Smart Cameras, pp. 101–108 (2007) CrossRefGoogle Scholar
  12. 12.
    He, S., Soraghan, J.J., O’Reilly, B.F.: Quantitative analysis of facial paralysis using local binary patterns in biomedical videos. IEEE Trans. Biomed. Eng. 56, 1864–1870 (2009) CrossRefGoogle Scholar
  13. 13.
    Ho An, K., Jin Chung, M.: Cognitive face analysis system for future interactive TV. IEEE Trans. Consum. Electron. 55(4), 2271–2279 (2009) CrossRefGoogle Scholar
  14. 14.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, 2007 Google Scholar
  15. 15.
    Jeanne, V., Unay, D., Jacquet, V.: Automatic detection of body parts in X-ray images. In: Proc. IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 25–30 (2009) Google Scholar
  16. 16.
    Jin, F., Qin, L., Jiang, L., Zhu, B., Tao, Y.: Novel separation method of black walnut meat from shell using invariant features and a supervised self-organizing map. J. Food Eng. 88, 75–85 (2008) CrossRefGoogle Scholar
  17. 17.
    Kim, W., Kim, C.: A new approach for overlay text detection and extraction from complex video scene. IEEE Trans. Image Process. 18(2), 401–411 (2009) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Konsti, J., Ahonen, T., Lundin, M., Joensuu, H., Pietikäinen, M., Lundin, J.: Texture classifiers for breast cancer outcome prediction. Virchows Arch. 455(Supplement 1), S34 (2009) Google Scholar
  19. 19.
    Kroon, B., Maas, S., Boughorbel, S., Hanjalic, A.: Eye localization in low and standard definition content with application to face matching. Comput. Vis. Image Underst. 113(8), 921–933 (2009) CrossRefGoogle Scholar
  20. 20.
    Kyllönen, J., Pietikäinen, M.: Visual inspection of parquet slabs by combining color and texture. In: Proc. IAPR Workshop on Machine Vision Applications, pp. 187–192 (2000) Google Scholar
  21. 21.
    Lahdenoja, O., Laiho, M., Maunu, J., Paasio, A.: A massively parallel face recognition system. EURASIP J. Embed. Syst. 2007(1), 31 (2007) CrossRefGoogle Scholar
  22. 22.
    Le, D.-D., Satoh, S.: Efficient concept detection by fusing simple visual features. In: Proc. ACM Symposium on Advanced Computing, pp. 1839–1840 (2009) Google Scholar
  23. 23.
    Lee, E.C., Lee, H.C., Park, K.R.: Finger vein recognition using minutia-based alignment and local binary pattern-based feature extraction. Int. J. Imaging Syst. Technol. 19(3), 179–186 (2009) CrossRefGoogle Scholar
  24. 24.
    Li, B., Meng, M.Q.-H.: Texture analysis for ulcer detection in capsule endoscopy images. Image Vis. Comput. 27, 1336–1342 (2009) CrossRefGoogle Scholar
  25. 25.
    Li, J., Wu, W., Wang, T., Zhang, Y.: One step beyond histograms: Image representation using Markov stationary features. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008) Google Scholar
  26. 26.
    Llado, X., Oliver, A., Freixenet, J., Marti, R., Marti, J.: A textural approach for mass false positive reduction in mammography. Comput. Med. Imaging Graph. 33, 415–422 (2009) CrossRefGoogle Scholar
  27. 27.
    Lu, H.S., Fang, C.-L., Wang, C., Chen, Ï.-W.: A novel method for gaze tracking by local pattern model and support vector regressor. Signal Process. 90, 1290–1299 (2010) MATHCrossRefGoogle Scholar
  28. 28.
    Ma, W., Huang, L., Liu, C.: Crowd estimation using multi-scale local texture analysis and confidence-based soft classification. In: Proc. Second International Symposium on Intelligent Information Technology Applications, pp. 142–146 (2008) Google Scholar
  29. 29.
    Mäenpää, T., Pietikäinen, M.: Real-time surface inspection by texture. Real-Time Imaging 9, 289–296 (2003) CrossRefGoogle Scholar
  30. 30.
    Mu, Y.D., Yan, S.C., Liu, Y., Huang, T., Zhou, B.F.: Discriminative local binary patterns for human detection in personal album. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008) Google Scholar
  31. 31.
    Nanni, L., Lumini, A.: Local binary patterns for a hybrid fingerprint matcher. Pattern Recognit. 41, 3461–3466 (2008) MATHCrossRefGoogle Scholar
  32. 32.
    Nanni, L., Lumini, A.: A reliable method for cell phenotype image classification. Artif. Intell. Med. 43, 87–97 (2008) CrossRefGoogle Scholar
  33. 33.
    Ning, J., Zhang, L., Zhang, D., Wu, C.: Robust object tracking using joint color-texture histogram. Int. J. Pattern Recognit. Artif. Intell. 23(7), 1245–1263 (2009) CrossRefGoogle Scholar
  34. 34.
    Ong, M.G.K., Connie, T., Teoh, A.B.J.: Touch-less palm print biometrics: Novel design and implementation. Image Vis. Comput. 26, 1551–1560 (2008) CrossRefGoogle Scholar
  35. 35.
    Otori, H., Kuriyama, S.: Data-embeddable texture synthesis. In: Proc. Seventh International Symposium on Smart Graphics, pp. 146–157 (2007) CrossRefGoogle Scholar
  36. 36.
    Pietikäinen, M., Ojala, T., Nisula, J., Heikkinen, J.: Experiments with two industrial problems using texture classification based on feature distributions. In: Proc. SPIE Intelligent Robots and Computer Vision XII: 3D Vision, Product Inspection, and Active Vision. Proc. SPIE, vol. 2354, pp. 197–204 (1994) CrossRefGoogle Scholar
  37. 37.
    Ruiz-del-Solar, J., Verschae, R., Correa, M.: Recognition of faces in unconstrained environments: A comparative study. EURASIP J. Adv. Signal Process. 2009, 1–19 (2009) CrossRefGoogle Scholar
  38. 38.
    Schödl, A., Szelinski, R., Salesin, D., Essa, I.: Video textures. In: Proc. ACM SIGGRAPH, pp. 489–498 (2000) Google Scholar
  39. 39.
    Sertel, O., Kong, J., Shimada, H., Çatalyürek, Ü.V., Saltz, J.H., Gurcan, M.N.: Computer-aided prognosis of neuroblastoma on whole-slide images: Classification of stromal development. Pattern Recognit. 42(6), 1093–1103 (2009) CrossRefGoogle Scholar
  40. 40.
    Shang, X., Veldhuis, R.N.J.: Local absolute binary patterns as image preprocessing for grip-pattern recognition in smart gun. In: Proc. IEEE International Conference on Biometrics: Theory, Applications and Systems, pp. 1–6 (2007) Google Scholar
  41. 41.
    Silven, O., Niskanen, M., Kauppinen, H.: Wood inspection with non-supervised clustering. Mach. Vis. Appl. 13, 275–285 (2003) CrossRefGoogle Scholar
  42. 42.
    Sorensen, L., Shaker, S.B., de Brujine, M.: Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans. Med. Imaging 29, 559–569 (2010) CrossRefGoogle Scholar
  43. 43.
    Tajeripour, F., Kabir, E., Sheikhi, A.: Fabric defect detection using modified local binary patterns. EURASIP J. Adv. Signal Process. 88, 12 (2008) Google Scholar
  44. 44.
    Turtinen, M., Pietikäinen, M., Silven, O., Mäenpää, T., Niskanen, M.: Paper characterisation by texture using visualization-based training. Int. J. Adv. Manuf. Technol. 22, 890–898 (2003) CrossRefGoogle Scholar
  45. 45.
    Unay, D., Ekin, A., Jasinschi, R.: Local structure-based region-of-interest retrieval in brain MR images. IEEE Trans. Inf. Technol. Biomed. 14, 897–903 (2010) CrossRefGoogle Scholar
  46. 46.
    Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling. In: Proc. International Conference on Computer Vision, pp. 32–39 (2009) Google Scholar
  47. 47.
    Wang, X., Zhang, C., Zhang, Z.: Boosted multi-task learning for face verification with applications to web image and video search. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 142–149 (2009) Google Scholar
  48. 48.
    Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. In: Proc. ECCV Workshop on Faces in Real-Life Images, pp. 1–14 (2008) Google Scholar
  49. 49.
    Wu, W., Li, J., Wang, T., Zhang, Y.: Markov chain local binary pattern and its application to video concept detection. In: Proc. IEEE International Conference on Image Processing, pp. 2524–2527 (2008) Google Scholar
  50. 50.
    Zhang, G., Huang, X., Li, S.Z., Wang, Y., Wu, X.: Boosting local binary pattern LBP-based face recognition. In: Proc. Advances in Biometric Person Authentication: 5th Chinese Conference on Biometric Recognition, pp. 179–186 (2004) CrossRefGoogle Scholar
  51. 51.
    Zhang, H., Gao, W., Chen, X., Zhao, D.: Object detection using spatial histogram features. Image Vis. Comput. 24(4), 327–341 (2006) CrossRefGoogle Scholar
  52. 52.
    Zolynski, G., Braun, T., Berns, K.: Local binary pattern based texture analysis in real time using a graphics processing unit (long version). In: Proceedings of Robotik 2008, VDI-Berichte, vol. 2012. VDI Wissensforum GmbH, Munich (2008) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Matti Pietikäinen
    • 1
  • Abdenour Hadid
    • 1
  • Guoying Zhao
    • 1
  • Timo Ahonen
    • 2
  1. 1.Machine Vision Group, Department of Computer Science and EngineeringUniversity of OuluOuluFinland
  2. 2.Nokia Research CenterPalo AltoUSA

Personalised recommendations