Electrode Materials for Lithium-ion Batteries

  • Pier Paolo Prosini


Since the first demonstration of the lithium intercalation properties in lithium iron phosphate (LiFePO4) the interest for the material as a cathode for lithium-ion batteries has progressively increased. LiFePO4 represents a valid candidate to build large size batteries for powering electric vehicles or for realizing dispersed electrical power sources. Not only are the precursors relatively inexpensive, but iron is also less toxic compared to other materials used in lithium-ion technology such as cobalt, nickel, or manganese. In addition, the operating voltage of the LiFePO4 electrode (about 3.4 V vs. Li) is ideal to maximize energy while minimizing side reactions due to electrolyte decomposition. However, these positive aspects are counteracted by the low electronic conductivity of the material, resulting in considerable ohmic drop within the electrode. In addition, it has been noted that LiFePO4 displays limited high-rate capability, with considerable loss in utilization with increased current, suggesting lithium-ion transport limitations. Several methods such as doping, grain size reduction, and carbon coating have been proposed to improve the electrochemical properties of LiFePO4. In this chapter the chemical-physical characteristics of cathode materials for lithium-ion batteries are described and the main methods used to enhance the electrochemical performance of LiFePO4 are reported.


Specific Capacity Electrochemical Performance Iron Phosphate Lithium Iron Lithium Iron Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. Sekai, H. Azuma, A. Omaru et al., Lithium-ion rechargeable cells with LiCoO2 and carbon electrodes. J. Power Sour. 43, 241–244 (1993)CrossRefGoogle Scholar
  2. 2.
    B.A. Johnson, R.W. White, Characterization of commercially available lithium-ion batteries. J. Power Sour. 70, 48–54 (1998)CrossRefGoogle Scholar
  3. 3.
    R.J. Gummow, M.M. Thackeray, Lithium-cobalt-nickel-oxide cathode materials prepared at 400°C for rechargeable lithium batteries. Solid State lonics 53, 681–687 (1992)CrossRefGoogle Scholar
  4. 4.
    N. Yabuuchi, T. Ohzuku, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J. Power Sour. 119, 171–174 (2003)CrossRefGoogle Scholar
  5. 5.
    S.L. Goodale, Chronology of Iron and Stell (Penton Publishing Co, Cleveland, 1931)Google Scholar
  6. 6.
    T. Ohzuku, Z. Thakehara, S. Yoshizawa, Metal-oxide of group-V-VIII as cathode materials for non-aqueous lithium cell. Denki Kagaku 46, 411–415 (1978)Google Scholar
  7. 7.
    B. Di Pietro, M. Patriarca, B. Scrosati, On the use of rocking chair configurations for cyclable lithium organic electrolyte batteries. J. Power Sour. 8, 289–299 (1982)CrossRefGoogle Scholar
  8. 8.
    K.M. Abraham, D.M. Pasquariello, E.B. Willstaedt, Rechargeable sodium batteries. J. Electrochem. Soc. 137, 1189–1190 (1990)CrossRefGoogle Scholar
  9. 9.
    J.C. Anderson, M. Schieber, Order-disorder transitions in heat-treated rock-salt lithium ferrite. J. Phys. Chem. Solids 25, 961–968 (1964)CrossRefGoogle Scholar
  10. 10.
    Y. Sakurai, H. Arai, J. Yamaki, Preparation of electrochemically active alpha-LiFeO2 at low temperature. Solid State Ionics 113, 29–34 (1998)CrossRefGoogle Scholar
  11. 11.
    B. Fuchs, S. Kemmler-Sack, Synthesis of LiMnO2 and LiFeO2 in molten Li halides. Solid State Ionics 68, 279–285 (1994)CrossRefGoogle Scholar
  12. 12.
    T. Shirane, R. Kanno, Y. Kawamoto et al., Structure and physical properties of lithium iron oxide, LiFeO2, synthesized by ionic exchange reaction. Solid State Ionics 79, 227–233 (1995)CrossRefGoogle Scholar
  13. 13.
    M. Tabuchi, C. Masquelier, T. Takeuchi et al., Li+/Na+ exchange from alpha-NaFeO2 using hydrothermal reaction. Solid State Ionics 90, 129–132 (1996)CrossRefGoogle Scholar
  14. 14.
    K. Ado, M. Tabuki, H. Kobayashi et al., Preparation of LiFeO2 with alpha-NaFeO2-type structure using a mixed-alkaline hydrothermal method. J. Electrochem. Soc. 144, L177–L180 (1997)CrossRefGoogle Scholar
  15. 15.
    R. Kanno, T. Shirane, Y. Kawamoto et al., Synthesis, structure, and electrochemical properties of a new lithium iron oxide, LiFeO2, with a corrugated layer structure. J. Electrochem. Soc. 143, 2435–2442 (1996)CrossRefGoogle Scholar
  16. 16.
    J. Kim, M. Manthiram, Synthesis and lithium intercalation properties of nanocrystalline lithium iron oxides. J. Electrochem. Soc. 146, 4371–4374 (1999)CrossRefGoogle Scholar
  17. 17.
    A. Dugast, R. Brec, G. Ouvrard et al., Li2FeS2, a cathodic material for lithium secondary battery. Solid State Ionics 5, 375–378 (1981)CrossRefGoogle Scholar
  18. 18.
    M.S. Whittingham, Chemistry of intercalation compounds: Metal guests in chalcogenide hosts. Prog. Solid State Chem. 12, 41–99 (1978)CrossRefGoogle Scholar
  19. 19.
    R. Brec, A. Dugast, Chemical and electrochemical study of the LixFeS2 cathodic system (0 < x < 2). Mater. Res. Bull. 15, 619–625 (1980)CrossRefGoogle Scholar
  20. 20.
    K. Kanamura, C. Zhen, H. Sakaebe et al., The discharge and charge characteristics of FeOCl modified by aniline in water. J. Electrochem. Soc. 138, 331–332 (1991)CrossRefGoogle Scholar
  21. 21.
    H. Arai, S. Okada, Y. Sakurai et al., Cathode performance and voltage estimation of metal trihalides. J. Power Sour. 68, 716–719 (1997)CrossRefGoogle Scholar
  22. 22.
    A. Manthiram, J.B. Goodenough, Lithium insertion into Fe2(MO4)3 frameworks: Comparison of M = W with M = Mo. J. Solid State Chem. 71, 349–360 (1987)CrossRefGoogle Scholar
  23. 23.
    A. Manthiram, J.B. Goodenough, Lithium insertion into Fe2(SO4)3 frameworks. J. Power Sour. 26, 403–408 (1989)CrossRefGoogle Scholar
  24. 24.
    A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier et al., Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144, 1609–1613 (1997)CrossRefGoogle Scholar
  25. 25.
    G.H. Li, H. Azuma, M. Tohda, LiMnPO4 as the cathode for lithium batteries. Electrochem. Solid State 5, A135–A137 (2002)CrossRefGoogle Scholar
  26. 26.
    J. Barker, M.Y. Saidi, J.L. Swoyer, Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. J. Electrochem. Soc. 150, A1394–A1398 (2003)CrossRefGoogle Scholar
  27. 27.
    K. Amine, H. Yasuda, M. Yamachi, Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochem. Solid State 3, A178–A179 (2000)CrossRefGoogle Scholar
  28. 28.
    J. Wolfenstine, J. Allen, LiNiPO4-LiCoPO4 solid solutions as cathodes. J. Power Sour. 136, 150–153 (2004)CrossRefGoogle Scholar
  29. 29.
    B.L. Cushing, J.B. Goodenough, Li2NaV2(PO4)3: A 3.7 V lithium-insertion cathode with the rhombohedral NASICON structure. J. Solid State Chem. 162, 176–181 (2001)CrossRefGoogle Scholar
  30. 30.
    M. Sato, H. Ohkawa, K. Yoshida et al., Enhancement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature. Solid State Ionics 135, 137–142 (2000)CrossRefGoogle Scholar
  31. 31.
    A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997)CrossRefGoogle Scholar
  32. 32.
    O.V. Yakubovich, M.A. Simonov, N.V. Belov, The crystal structure of a synthetic triphylite LiFe[PO4]. Sov. Phys. Dokl. 2, 347–350 (1977)Google Scholar
  33. 33.
    D. Morgan, A. Van der Ven, G. Ceder, Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid State 7, A30–A32 (2004)CrossRefGoogle Scholar
  34. 34.
    A.V. Churikov, A.V. Ivanishchev, I.A. Ivanishcheva et al., Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim. Acta. 55, 2939–2950 (2010)CrossRefGoogle Scholar
  35. 35.
    P.P. Prosini, M. Lisi, D. Zane et al., Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148, 45–51 (2002)CrossRefGoogle Scholar
  36. 36.
    S.-Y. Chung, J.T. Bloking, Y.-M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1, 123–128 (2002)CrossRefGoogle Scholar
  37. 37.
    J.F. Ni, H.H. Zhou, J.T. Chen et al., LiFePO4 doped with ions prepared by co-precipitation method. Mater. Lett. 59, 2361–2365 (2005)CrossRefGoogle Scholar
  38. 38.
    G.X. Wang, S. Needham, J. Yao et al., A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries. J. Power Sour. 159, 282–286 (2006)CrossRefGoogle Scholar
  39. 39.
    S.Q. Shi, L.J. Liu, C.Y. Ouyang et al., Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys. Rev. B 68, 195108–1/5 (2003)CrossRefGoogle Scholar
  40. 40.
    B.L. Ellis, M. Wagemaker, F.M. Mulder et al., Comment on Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties. Adv. Funct. Mater. 20, 186–188 (2010)CrossRefGoogle Scholar
  41. 41.
    R. Dominkó, M. Bele, M. Gaberscek et al., Porous olivine composites synthesized by sol-gel technique. J. Power Sour. 153, 274–280 (2006)CrossRefGoogle Scholar
  42. 42.
    S. Yang, P.Y. Zavalij, M.S. Whittingham, Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem. Commun. 3, 505–508 (2001)CrossRefGoogle Scholar
  43. 43.
    J. Barker, M.Y. Saidi, J.L. Swoyer, Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method. Electrochem. Solid State 6, A53–A55 (2003)CrossRefGoogle Scholar
  44. 44.
    J.X. Zhang, M.Y. Xu, X.W. Cao et al., A synthetic route for lithium iron phosphate prepared by improved coprecipitation. Funct. Mater. Lett. 3, 177–180 (2010)Google Scholar
  45. 45.
    V. Palomares, A. Goni, I.G.D. Muro et al., New freeze-drying method for LiFePO4 synthesis. J. Power Sour. 171, 879–885 (2007)CrossRefGoogle Scholar
  46. 46.
    C. Delmas, M. Maccario, L. Crogunnec et al., Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7, 665–671 (2008)CrossRefGoogle Scholar
  47. 47.
    A. Manthiram, A.V. Murugan, A. Sarkar et al., Nanostructured electrode materials for electrochemical energy storage and conversion. Energ. Environ. Sci. 1, 621–638 (2008)CrossRefGoogle Scholar
  48. 48.
    D. Jugovic, D. Uskokovic, A review of recent developments in the synthesis procedures of lithium iron phosphate powders. J. Power Sour. 190, 538–544 (2009)CrossRefGoogle Scholar
  49. 49.
    Z. Li, D. Zhang, F. Yang, Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. J. Mater. Sci. 44, 2435–2443 (2009)CrossRefGoogle Scholar
  50. 50.
    A. Yamada, S.C. Chung, K. Hinokuma, Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224–A229 (2001)CrossRefGoogle Scholar
  51. 51.
    A.S. Andersson, J.O. Thomas, B. Kalska et al., Thermal stability of LiFePO4-based cathodes. Electrochem. Solid State 3, 66–68 (2000)CrossRefGoogle Scholar
  52. 52.
    A.S. Andersson, J.O. Thomas, The source of first-cycle capacity loss in LiFePO4. J. Power Sour. 97–98, 498–502 (2001)CrossRefGoogle Scholar
  53. 53.
    P.P. Prosini, M. Carewska, S. Scaccia et al., A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance. J. Electrochem. Soc. 149, A886–A890 (2002)CrossRefGoogle Scholar
  54. 54.
    C. Delacourt, P. Poizot, S. Levasseur et al., Size effects on carbon-free LiFePO4 powders. Electrochem. Solid State 9, A352–A355 (2006)CrossRefGoogle Scholar
  55. 55.
    M. Tang, W.C. Carter, J.F. Belak et al., Modeling the competing phase transition pathways in nanoscale olivine electrodes. Electrochim. Acta. 56, 969–976 (2010)CrossRefGoogle Scholar
  56. 56.
    N. Ravet, J.B. Goodenough, S. Besner et al., Improved iron based cathode material. In Proceeding of 196th ECS Meeting, Hawaii, 17–22 Oct 1999Google Scholar
  57. 57.
    P.P. Prosini, D. Zane, M. Pasquali, Improved electrochemical performance of a LiFePO4-based composite cathode. Electrochim. Acta. 46, 3517–3523 (2001)CrossRefGoogle Scholar
  58. 58.
    H. Huang, S.-C. Yin, L.F. Nazar, Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid State 4, A170–A172 (2001)CrossRefGoogle Scholar
  59. 59.
    Z. Chen, J.R. Dahn, Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem. Soc. 149, A1184–A1189 (2002)CrossRefGoogle Scholar
  60. 60.
    X.J. Chen, G.S. Cao, X.B. Zhao et al., Electrochemical performance of LiFe1?xVxPO4/carbon composites prepared by solid-state reaction. J. Alloys Compd. 463, 385–389 (2008)CrossRefGoogle Scholar
  61. 61.
    M.M. Doeff, J.D. Wilcox, R. Yu et al., Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites. J. Solid State Electron. 12, 995–1001 (2008)CrossRefGoogle Scholar
  62. 62.
    R. Dominkó, M. Gaberscek, M. Bele et al., Carbon nanocoatings on active materials for Li-ion batteries. J. Eur. Ceram. Soc. 27, 909–913 (2007)CrossRefGoogle Scholar
  63. 63.
    F. Croce, A. D’Epifanio, J. Hassoun et al., A Novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem. Solid State 5, A47–A50 (2002)CrossRefGoogle Scholar
  64. 64.
    A. Yamada, M. Hosoya, S.C. Chung et al., Olivine-type cathodes: Achievements and problems. J. Power Sour. 119, 232–238 (2003)CrossRefGoogle Scholar
  65. 65.
    M. Takahashi, S. Tobishima, K. Takei et al., Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. J. Power Sour. 97–98, 508–511 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC  2011

Authors and Affiliations

  1. 1.Renewable Technical Unit, C.R. CasacciaENEARomeItaly

Personalised recommendations