Advertisement

Development of SMES Systems

  • Weijia Yuan
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

As energy storage devices, superconducting magnetic energy storage systems utilise a relatively simple concept; it stores energy in the magnetic field created by the flow of direct current in a superconducting coil which has been cryogenically cooled to a temperature below its superconducting critical temperature.

Keywords

Reactive Power Alternate Current Energy Storage Device Superconducting Magnetic Energy Storage Superconducting Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Seeber B et al (1998) Handbook of applied superconductivity. CRC press, Boca RatonCrossRefGoogle Scholar
  2. 2.
    Luongo CA (1996) Superconducting storage systems: an overview. Magn IEEE Trans 32(4):2214–2223CrossRefMathSciNetGoogle Scholar
  3. 3.
    Xue XD, Cheng KWE, Sutanto D (2006) A study of the status and future of superconducting magnetic energy storage in power systems. Supercond Sci Technol 19(6):R31–R39CrossRefGoogle Scholar
  4. 4.
    Schoenung SM, Meier WR, Hull JR, Fagaly RL, Heiberger M, Stephens RB, Leuer JA, Guzman RA (1993) Design aspects of mid-size SMES using high temperature superconductors. Appl Supercond IEEE Trans 3(1):234–237CrossRefGoogle Scholar
  5. 5.
    Kalsi SS, Aized D, Conner B, Snitchier G, Campbell J, Schwall RE, Kellers J, Stephanblome T, Tromm A, Winn P (1997) HTS-SMES magnet design and test results. Appl Supercond IEEE Trans 7(2):971–976CrossRefGoogle Scholar
  6. 6.
    Friedman A, Shaked N, Perel E, Gartzman F, Sinvani M, Wolfus Y, Kottick D, Furman J, Yeshurun Y (2003) HT–SMES operating at liquid nitrogen temperatures for electric power quality improvement demonstrating. Appl Supercond IEEE Trans 13(2):1875–1878CrossRefGoogle Scholar
  7. 7.
    Kreutz R, Salbert H, Krischel D, Hobl A, Radermacher C, Blacha N, Behrens P, Dutsch K (2003) Design of a 150 kJ high-Tc SMES (HSMES) for a 20 kVA uninterruptible power supply system. Appl Supercond IEEE Trans 13(2):1860–1862CrossRefGoogle Scholar
  8. 8.
    Kim JH, Kim W-S, Hahn S-Y, Lee JM, Rue MH, Cho BH, Im CH, Jung HK (2005) Characteristic test of HTS pancake coil modules for small-sized SMES. Appl Supercond IEEE Trans 15(2):1919–1922CrossRefGoogle Scholar
  9. 9.
    Park M-J, Kwak S-Y, Kim W-S, Lee S-W, Lee J-K, Han J-H, Choi K-D, Jung H-K, Seong K-C, yop Hahn S (2007) AC loss and thermal stability of HTS model coils for a 600 kJ SMES. Appl Supercond IEEE Trans 17(2):2418–2421CrossRefGoogle Scholar
  10. 10.
    Hawley CJ, Gower SA (2005) Design and preliminary results of a prototype HTS-SMES device. Appl Supercond IEEE Trans 15(2):1899–1902CrossRefGoogle Scholar
  11. 11.
    Hawley CJ, Cuiuri D, Cook CD, Gower SA, Beales TP (2006) Characterisation and control of a prototype HTS-SMES device. J Phys Conf Ser 43:809–812CrossRefGoogle Scholar
  12. 12.
    Fagnard J-F, Crate D, Jamoye J-F, Laurent Ph, Mattivi B, Cloots R, Ausloos M, Genon A, Vanderbemden Ph (2006) Use of a high-temperature superconducting coil for magnetic energy storage. J Phys Conf Ser 43:829–832CrossRefGoogle Scholar
  13. 13.
    Tosaka T, Koyanagi K, Ohsemochi K, Takahashi M, Ishii Y, Ono M, Ogata H, Nakamoto K, Takigami H, Nomura S, Kidoguchi K, Onoda H, Hirano N, Nagaya S (2007) Excitation tests of prototype HTS coil with Bi2212 cables for development of high energy density SMES. Appl Supercond IEEE Trans 17(2):2010–2013CrossRefGoogle Scholar
  14. 14.
    Tixador P, Deleglise M, Badel A, Berger K, Bellin B, Vallier JC, Allais A, Bruzek CE (2008) First tests of a 800 kJ HTS-SMES. Appl Supercond IEEE Trans 18(2):774–778CrossRefGoogle Scholar
  15. 15.
    Makida Y, Hirabayashi H, Shintomi T, Nomura S (2007) Design of SMES system with liquid hydrogen for emergency purpose. Appl Supercond IEEE Trans 17(2):2006–2009CrossRefGoogle Scholar
  16. 16.
    Coombs T, Campbell AM, Storey R, Weller R (1999) Superconducting magnetic bearings for energy storage flywheels. Appl Supercond IEEE Trans 9(2):968–971CrossRefGoogle Scholar
  17. 17.
    Coombs TA, Campbell AM, Cardwell DA (1995) Development of an active superconducting magnetic bearing. Appl Supercond IEEE Trans 5(2):630–633CrossRefGoogle Scholar
  18. 18.
    Coombs TA, Cardwell DA, Campbell AM (1997) Dynamic properties of superconducting magnetic bearings. Appl Supercond IEEE Trans 7(2):924–927CrossRefGoogle Scholar
  19. 19.
    Schnyder G, Sjostrom M (2005) SMES. HTS Power Syst 18:1–3Google Scholar
  20. 20.
    Tripathy SC, Kalantar M, Balasubramanian R (1991) Dynamics and stability of wind and diesel turbine generators with superconducting magnetic energy storage unit on an isolated power system. Energy Convers IEEE Trans 6(4):579–585CrossRefGoogle Scholar
  21. 21.
    Zhou F, Joos G, Abbey C, Jiao L, Ooi BT (2004) Use of large capacity SMES to improve the power quality and stability of wind farms. In: Power engineering society general meeting, 2004. IEEE, vol 2, 10-10, pp 2025–2030Google Scholar
  22. 22.
    Nomura S, Ohata Y, Hagita T, Tsutsui H, Tsuji-Iio S, Shimada R (2005) Wind farms linked by SMES systems. Appl Supercond IEEE Trans 15(2):1951–1954CrossRefGoogle Scholar
  23. 23.
    Cooper P, Greenhouse emissions inventory fact sheet. http://www.portseattle.org/downloads/community/environment/greenhousefactshe et.Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Wolfson CollegeUniversity of CambridgeCambridgeUK

Personalised recommendations