Advertisement

Background of Superconductors

  • Weijia Yuan
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Superconductivity was discovered in 1911 by Kamerlingh Onnes. It was observed that the resistance of the solid mercury abruptly disappeared at the temperature of 4.2 K [1]. In subsequent decades, superconductivity was found in several other materials, most of which are metals. Lead was found to be superconducting at 7 K in 1913, and niobium nitride was found to be superconducting at 16 K in 1941.

Keywords

Current Density Distribution Critical Magnetic Field Meissner Effect Critical State Model Coated Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Onnes HK (1911) The resistance of pure mercury at helium temperatures. Commun Phys Lab Univ. Leiden 12Google Scholar
  2. 2.
    Ochsenfeld R, Meissner W (1933) Ein neuer effekt bei eintritt der supraleitfhigkeit. Naturwissenschaften 21:787–788, 1933-11-01Google Scholar
  3. 3.
    Larbalestier D, Gurevich A, Feldmann DM, Polyanskii A (2001) High-Tc superconducting materials for electric power applications. Nature 414(6861):368–377CrossRefGoogle Scholar
  4. 4.
    London F, London H (1935) The electromagnetic equations of the supraconductor. Proc Royal Soc Lond Series A—Math Phys Sci 149(866):71–88CrossRefMATHGoogle Scholar
  5. 5.
    Ginzburg VL, Landau LD (1950) On the theory of superconductivity. Zh Eksp Teor FizGoogle Scholar
  6. 6.
    Ginzburg VL, Landau LD (1957) Sov Phys JETPGoogle Scholar
  7. 7.
    Bardeen J, Cooper LN, Schrieffer JR (1957) Microscopic theory of superconductivity. Phys Rev 106(1):162–164CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bardeen J, Cooper LN, Schrieffer JR (1957) Theory of superconductivity. Phys Rev 108(5):1175–1204CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Leon N, Cooper (1956) Bound electron pairs in a degenerate fermi gas. Phys Rev 104(4):1189–1190Google Scholar
  10. 10.
    Matthias BT, Geballe TH, Geller S, Corenzwit E (1954) Superconductivity of \(\hbox{Nb}_{3}\hbox{Sn}\). Phys Rev 95(6):1435CrossRefGoogle Scholar
  11. 11.
    Bednorz JG, Mller KA (1986) Possible high Tc superconductivity in the balacuo system. Zeitschrift fr Physik B Condensed Matter 64Google Scholar
  12. 12.
    Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ, Chu CW (1987) Superconductivity at 93 k in a new mixed-phase y-ba-cu-o compound system at ambient pressure. Phys Rev Lett 58(9):908–910CrossRefGoogle Scholar
  13. 13.
    Maeda H, Tanaka Y, Fukutomi M, T Asano (1988) A new high-\(t_{c}\) oxide superconductor without a rare earth element. Jpn J Appl Phys, 27(Part 2, No. 2):L209–L210Google Scholar
  14. 14.
    Vanderbemden P, Dorbolo S, Hari-Babu N, Ntatsis A, Cardwell DA, Campbell AM (2003) Behavior of bulk melt-textured YBCO single domains subjected to crossed magnetic fields. IEEE Trans Appl Supercond 13(2):3746–3749CrossRefGoogle Scholar
  15. 15.
    Superconducting properties of natural and artificial grain boundaries in bulk melt-textured YBCO. Phys C: Supercond 302(4):257–270, 1998.Google Scholar
  16. 16.
    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Superconductivity at 39k in Magnesium diboride. Nature 410(6824):63–64CrossRefGoogle Scholar
  17. 17.
    Ozawa TC, Kauzlarich SM (2008) Chemistry of layered d-metal pnictide oxides and their potential as candidates for new superconductors. Sci Technol Adv Mater 9(3):033003 (11pp)Google Scholar
  18. 18.
    Wu G, Xie YL, Chen H, Zhong M, Liu RH, Shi BC, Li QJ, Wang XF, Wu T, Yan YJ, Ying JJ, Chen XH (2009) Superconductivity at 56 K in Samarium-doped SrFeAsF. Condens Matt 21:142203CrossRefGoogle Scholar
  19. 19.
    Bean CP (1964) Magnetization of high-field superconductors. Rev Mod Phys 36(1):31–39CrossRefGoogle Scholar
  20. 20.
    Kim YB, Hempstead CF, Strnad A (1963) Magnetization and critical supercurrents. Phys Rev 129(2):528–535CrossRefGoogle Scholar
  21. 21.
    Kim YB, Hempstead CF, Strnad AR (1962) Critical persistent currents in hard superconductors. Phys Rev Lett 9(7):306–309CrossRefGoogle Scholar
  22. 22.
    Anderson PW (1962) Theory of flux creep in hard superconductors. Phys Rev Lett 9(7):309–311CrossRefGoogle Scholar
  23. 23.
    Rhyner J (1993) Magnetic properties and AC-losses of superconductors with power law current–voltage characteristics. Phys C: Supercond 212(3-4):292–300CrossRefGoogle Scholar
  24. 24.
    Brandt EH, Indenbom M (1993) Type-II-superconductor strip with current in a perpendicular magnetic field. Phys Rev B 48(17):12893–12906CrossRefGoogle Scholar
  25. 25.
    Zeldov E, John R. Clem, McElfresh M, Darwin M (1994) Magnetization and transport currents in thin superconducting films. Phys Rev B 49(14):9802–9822CrossRefGoogle Scholar
  26. 26.
    Majoros M, Ye L, Campbell AM, Coombs TA, Sumption MD, Collings EW (2007) Modeling of transport ac losses in superconducting arrays carrying anti-parallel currents. IEEE Trans Appl Supercond 17(2):1803 –1806CrossRefGoogle Scholar
  27. 27.
    Majoros M, Ye L, Velichko AV, Coombs TA, Sumption MD, Collings EW (2007) Transport ac losses in ybco coated conductors. Supercond Sci Technol 20(9):S299CrossRefGoogle Scholar
  28. 28.
    Methods of mathematical physics (1953). Interscience Publishers, New York and LondonGoogle Scholar
  29. 29.
    Coombs TA, Campbell AM, Murphy A, Emmens M (2001) A fast algorithm for calculating the critical state in superconductors. Int J Comput Math Electr Electron Eng 20(1):240–252CrossRefGoogle Scholar
  30. 30.
    Barnes G, McCulloch M, Dew-Hughes D (1999) Computer modelling of type ii superconductors in applications. Supercond Sci Technol 12(8):518–522CrossRefGoogle Scholar
  31. 31.
    Amemiya N, Murasawa S -i, Banno N, Miyamoto K (1998) Numerical modelings of superconducting wires for AC loss calculations. Phys C: Supercond 310(1-4):16 – 29CrossRefGoogle Scholar
  32. 32.
    Amemiya N, Miyamoto K, S -i Murasawa, Mukai H, Ohmatsu K (1998) Finite element analysis of AC loss in non-twisted B-i-2223 tape carrying AC transport current and/or exposed to DC or AC external magnetic field. Phys C: Supercond 310(1-4):30–35CrossRefGoogle Scholar
  33. 33.
    Hong Z, Campbell AM, Coombs TA (2006) Numerical solution of critical state in superconductivity by finite element software. Supercond Sci Technol 19(12):1246–1252CrossRefGoogle Scholar
  34. 34.
    Hong Z, Campbell AM, Coombs TA (2007) Computer modeling of magnetisation in high temperature bulk superconductors. IEEE Trans Appl Supercond 17(2):3761–3764CrossRefGoogle Scholar
  35. 35.
    Vanderbemden Ph, Hong Z, Coombs TA, Denis S, Ausloos M, Schwartz J, Rutel IB, Hari Babu N, Cardwell DA, Campbell AM (2007) Behavior of bulk high-temperature superconductors of finite thickness subjected to crossed magnetic fields: experiment and model. Phys Rev B 75(17):174515CrossRefGoogle Scholar
  36. 36.
    Vanderbemden P, Hong Z, Coombs TA, Ausloos M, Hari Babu N, Cardwell DA, Campbell AM (2007) Remagnetization of bulk high-temperature superconductors subjected to crossed and rotating magnetic fields. Supercond Sci Technol 20(9):S174–S183CrossRefGoogle Scholar
  37. 37.
    Yuan W, Xian W, Ainslie MD, Hong Z, Yan Y, Pei R, Jiang Y, Coombs TA (2010) Design and test of a superconducting magnetic energy storage (SMES) coil. IEEE Trans Appl Supercond 20(3):1379–1382CrossRefGoogle Scholar
  38. 38.
    Noe M, Steurer M (2007) High-temperature superconductor fault current limiters: concepts, applications, and development status. Supercond Sci Technol 20(3):R15Google Scholar
  39. 39.
    Clem JR, Claassen JH, Mawatari Y (2007) AC losses in a finite z stack using an anisotropic homogeneous-medium approximation. Supercond Sci Technol 20(12):1130–1139CrossRefGoogle Scholar
  40. 40.
    Claassen JH (2006) An approximate method to estimate AC loss in tape-wound superconducting coils. Appl Phys Lett 88(12):122512CrossRefGoogle Scholar
  41. 41.
    Grilli F, Ashworth SP (2007) Measuring transport AC losses in YBCO-coated conductor coils. Supercond Sci Technol 20(8):794–799CrossRefGoogle Scholar
  42. 42.
    Grilli F, Ashworth SP (2007) Quantifying AC losses in YBCO coated conductor coils. IEEE Trans Appl Supercond 17(2):3187–3190CrossRefGoogle Scholar
  43. 43.
    Brambilla R, Grilli F, Nguyen DN, Martini L, Sirois F (2009) Ac losses in thin superconductors: the integral equation method applied to stacks and windings. Supercond Sci Technol 22(7):075018 (10pp)Google Scholar
  44. 44.
    Brambilla R, Grilli F, Martini L, Sirois F (2008) Integral equations for the current density in thin conductors and their solution by the finite-element method. Supercond Sci Technol 21(10):105008CrossRefGoogle Scholar
  45. 45.
    Pardo E (2008) Modeling of coated conductor pancake coils with a large number of turns. Supercond Sci Technol 21(6):065014 (8pp)Google Scholar
  46. 46.
    Souc J, Pardo E, Vojenciak M, Gomory F (2009) Theoretical and experimental study of AC loss in high temperature superconductor single pancake coils. Supercond Sci Technol 22(1):015006 (11pp)Google Scholar
  47. 47.
    Muller K-H (1997) Self-field hysteresis loss in periodically arranged superconducting strips. Phys C: Supercond 289(1-2):123–130CrossRefGoogle Scholar
  48. 48.
    Muller K-H (1999) AC losses in stacks and arrays of YBCO/hastelloy and monofilamentary Bi-2223/Ag tapes. Phys C: Supercond 312(1-2):149–167CrossRefGoogle Scholar
  49. 49.
    Mawatari Y, Kajikawa K (2007) Hysteretic ac loss of superconducting strips simultaneously exposed to ac transport current and phase-different ac magnetic field. Appl Phys Lett 90(2):022506CrossRefGoogle Scholar
  50. 50.
    Zhiyong Hong (2007) PhD Thesis, University of CambridgeGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Wolfson CollegeUniversity of CambridgeCambridgeUK

Personalised recommendations