Magma Transport

  • Andrew Fowler
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 36)


Chapter 9 begins with an extended but condensed discussion of igneous petrology, involving detailed discussion of phase diagrams and the difference between the various basaltic lavas which occur. The remainder of the chapter considers in sequence the path of magma from its genesis deep in the mantle to its eruption at the surface. First the creeping transport in the asthenosphere is described, then magmafracturing in the lithosphere, then crystallisation in magma chambers, and finally volcanic eruptions.


Stress Intensity Factor Partial Melting Rayleigh Number Magma Chamber Mantle Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aharonov E, Whitehead JA, Kelemen PB, Spiegelman M (1995) Channeling instability of upwelling melt in the mantle. J Geophys Res 100:20433–20450 CrossRefGoogle Scholar
  2. Ahern JL, Turcotte DL (1979) Magma migration beneath an ocean ridge. Earth Planet Sci Lett 45:115–122 CrossRefGoogle Scholar
  3. Albarède F (2003) Geochemistry: an introduction. Cambridge University Press, Cambridge Google Scholar
  4. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108 CrossRefGoogle Scholar
  5. Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 7:1103–1112 Google Scholar
  6. Avrami M (1940) Kinetics of phase change. II. Transformation–time relations for random distribution of nuclei. J Chem Phys 8:212–224 Google Scholar
  7. Benjamin TB, Bona JL, Mahony JJ (1972) Model equations for long waves in nonlinear dispersive systems. Philos Trans R Soc Lond A 272:47–78 MATHMathSciNetCrossRefGoogle Scholar
  8. Bercovici D (ed) (2009a) Mantle dynamics. Treatise on geophysics, vol 7. Elsevier, Amsterdam Google Scholar
  9. Bercovici D (2009b) Mantle dynamics past, present and future: an introduction and overview. In: Bercovici D (ed) Mantle dynamics. Treatise on geophysics, vol 7. Elsevier, Amsterdam, pp 1–30 CrossRefGoogle Scholar
  10. Bercovici D, Michaut C (2010) Two-phase dynamics of volcanic eruptions: compaction, compression and the conditions for choking. Geophys J Int 182:843–864 CrossRefGoogle Scholar
  11. Bergles AE, Collier JG, Delhaye JM, Hewitt GF, Mayinger F (1981) Two-phase flow and heat transfer in the power and process industries. Hemisphere, McGraw-Hill, New York Google Scholar
  12. Bittner D, Schmeling H (1995) Numerical modelling of melting processes and induced diapirism in the lower crust. Geophys J Int 123:59–70 CrossRefGoogle Scholar
  13. Bolchover P, Lister JR (1999) The effect of solidification on fluid-driven fracture, with application to bladed dykes. Proc R Soc Lond A 455:2389–2409 MATHCrossRefGoogle Scholar
  14. Bowen NL (1956) The evolution of the igneous rocks. Dover, New York Google Scholar
  15. Brandeis G, Jaupart C (1986) On the interaction between convection and crystallisation in cooling magma chambers. Earth Planet Sci Lett 77:345–361 CrossRefGoogle Scholar
  16. Brandeis G, Jaupart C, Allègre CJ (1984) Nucleation, crystal growth and the thermal regime of cooling magmas. J Geophys Res 89:10161–10177 CrossRefGoogle Scholar
  17. Brandt A, Fernando HJS (eds) (1995) Double-diffusive convection. AGU, Washington Google Scholar
  18. Brown GM (1956) The layered ultrabasic rocks of Rhum, Inner Hebrides. Philos Trans R Soc A 240:1–53 CrossRefGoogle Scholar
  19. Butterworth D, Hewitt GF (1977) Two-phase flow and heat transfer. Oxford University Press, Oxford Google Scholar
  20. Carrier GF, Krook M, Pearson CE (1966) Functions of a complex variable. McGraw-Hill, New York MATHGoogle Scholar
  21. Clemens JD, Mawer CK (1992) Granitic magma transport by fracture propagation. Tectonophysics 204:339–360 CrossRefGoogle Scholar
  22. Collier JG, Thome JR (1996) Convective boiling and condensation, 3rd edn. Clarendon, Oxford Google Scholar
  23. Courtillot V (1999) Evolutionary catastrophes: the science of mass extinction (transl J McClinton). Cambridge University Press, Cambridge Google Scholar
  24. Davis SH, Huppert HE, Müller U, Worster MG (eds) (1992) Interactive dynamics of convection and solidification. Kluwer, Dordrecht Google Scholar
  25. DePaolo DJ, Manga M (2003) Deep origin of hotspots—the mantle plume model. Science 300:920–921 CrossRefGoogle Scholar
  26. Dobran F (2001) Volcanic processes: mechanisms in material transport. Kluwer, New York Google Scholar
  27. Dowty E (1980) Crystal growth and nucleation theory and the numerical simulation of igneous crystallisation. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton, pp 419–485 Google Scholar
  28. Drew DA, Passman SL (1999) Theory of multicomponent fluids. Springer, New York Google Scholar
  29. Ehrhard P, Riley DS, Steen PH (eds) (2001) Interactive dynamics of convection and solidification. Kluwer, Dordrecht Google Scholar
  30. Emeleus CH (1987) The Rhum layered complex, Inner Hebrides, Scotland. In: Parsons I (ed) Origins of igneous layering. NATO ASI series C, vol 196. Reidel, Dordrecht, pp 263–286 Google Scholar
  31. England AH (1971) Complex variable methods in elasticity. Wiley-Interscience, London MATHGoogle Scholar
  32. Flemings MC (1974) Solidification processing. McGraw-Hill, New York Google Scholar
  33. Foulger GR, Natland JH (2003) Is “hotspot” volcanism a consequence of plate tectonics? Science 300:921–922 CrossRefGoogle Scholar
  34. Fowler AC (1985b) A mathematical model of magma transport in the asthenosphere. Geophys Astrophys Fluid Dyn 33:63–96 MATHCrossRefGoogle Scholar
  35. Fowler AC (1990) A compaction model for melt transport in the Earth’s asthenosphere. Part II: applications. In: Ryan MP (ed) Magma transport and storage. Wiley, Chichester, pp 15–32 Google Scholar
  36. Fowler AC, Scott DR (1996) Hydraulic crack propagation in a porous medium. Geophys J Int 127:595–604 CrossRefGoogle Scholar
  37. Francis P, Oppenheimer C (2004) Volcanoes, 2nd edn. Oxford University Press, Oxford Google Scholar
  38. Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, Cambridge MATHCrossRefGoogle Scholar
  39. Gakhov FD (1990) Boundary value problems. Dover, New York MATHGoogle Scholar
  40. Grout FF (1945) Scale models of structures related to batholiths. Am J Sci 243-A:260–284. (Daly volume) Google Scholar
  41. Hargraves RB (ed) (1980) Physics of magmatic processes. Princeton University Press, Princeton Google Scholar
  42. Hess PC (1989) Origins of igneous rocks. Harvard University Press, Cambridge Google Scholar
  43. Hewitt GF, Hall-Taylor NS (1970) Annular two-phase flow. Pergamon, Oxford Google Scholar
  44. Hewitt IJ, Fowler AC (2009) Melt channelization in ascending mantle. J Geophys Res 114:B06210. doi: 10.1029/2008JB006185 CrossRefGoogle Scholar
  45. Hofmann AW, Hart SR (2007) Another nail in which coffin? Science 315:39–40 CrossRefGoogle Scholar
  46. Holmes A (1978) Principles of physical geology, 3rd edn, revised by Doris Holmes. Wiley, New York Google Scholar
  47. Hort M, Spohn T (1991) Numerical simulation of the crystallization of multicomponents in thin dikes or sills. 2. Effects of heterocatalytic nucleation and composition. J Geophys Res 96:485–499 CrossRefGoogle Scholar
  48. Huppert HE (1986) The intrusion of fluid mechanics into geology. J Fluid Mech 173:557–594 CrossRefGoogle Scholar
  49. Huppert HE (1990) The fluid mechanics of solidification. J Fluid Mech 212:209–240 MathSciNetCrossRefGoogle Scholar
  50. Huppert HE (2000) Geological fluid mechanics. In: Batchelor GK, Moffatt HK, Worster MG (eds) Perspectives in fluid dynamics. Cambridge University Press, Cambridge, pp 447–506 Google Scholar
  51. Huppert HE, Sparks RSJ (1980) The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense, ultrabasic magma. Contrib Mineral Petrol 75:279–289 CrossRefGoogle Scholar
  52. Huppert HE, Sparks RSJ (1988) The fluid dynamics of crustal melting by injection of basaltic sills. Trans R Soc Edinb 79:237–243 Google Scholar
  53. Irvine TN (1987) Layering and related structures in the Duke Island and Skaergaard intrusions: similarities, differences, and origins. In: Parsons I (ed) Origins of igneous layering. NATO ASI series C, vol 196. Reidel, Dordrecht, pp 185–245 Google Scholar
  54. Keller JB, Rubinow SI (1981) Recurrent precipitation and Liesegang rings. J Chem Phys 74:5000–5007 MathSciNetGoogle Scholar
  55. Krauskopf KB, Bird DK (1995) Introduction to geochemistry. McGraw-Hill, New York Google Scholar
  56. Kurz W, Fisher DJ (1998) Fundamentals of solidification, 4th edn. Trans Tech, Zurich Google Scholar
  57. Lister JR, Kerr RC (1991) Fluid-mechanical models of crack propagation and their application to magma transport in dykes. J Geophys Res 96:10049–10077 CrossRefGoogle Scholar
  58. Loper DE (ed) (1987) Structure and dynamics of partially solidified systems. Martinus Nijhoff, Dordrecht Google Scholar
  59. Maaløe S (1978) The origin of rhythmic layering. Mineral Mag 42:337–345 CrossRefGoogle Scholar
  60. Marsh BD (1982) On the mechanics of igneous diapirism, stoping, and zone melting. Am J Sci 282:808–855 CrossRefGoogle Scholar
  61. Mason B, Moore CB (1982) Principles of geochemistry, 4th edn. Wiley, Chichester Google Scholar
  62. McBirney AR (1984) Igneous petrology. Freeman Cooper and Co, San Francisco Google Scholar
  63. McBirney AR, Noyes RM (1979) Crystallisation and layering of the Skaergaard intrusion. J Pet 20:487–554 Google Scholar
  64. McKenzie DP (1984) The generation and compaction of partially molten rock. J Pet 25:713–765 MathSciNetGoogle Scholar
  65. McNutt MK (2006) Another nail in the plume coffin? Science 313:1394 CrossRefGoogle Scholar
  66. Melnik O (2000) Dynamics of two-phase conduit flow of high-viscosity gas-saturated magma: large variations of sustained explosive eruption intensity. Bull Volcanol 62:153–170 CrossRefGoogle Scholar
  67. Morgan JP, Blackman DK, Sinton JM (eds) (1992) Mantle flow and melt generation at mid-ocean ridges. Geophysical monograph, vol 71. AGU, Washington Google Scholar
  68. Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43 CrossRefGoogle Scholar
  69. Morris S (1982) The effects of strongly temperature-dependent viscosity on slow flow past a hot sphere. J Fluid Mech 124:1–26 MATHCrossRefGoogle Scholar
  70. Muskhelishvili NI (1953) Singular integral equations (Translation edited by JRM Radok). Noordhoff, Groningen MATHGoogle Scholar
  71. Ng FSL (1998) Mathematical modelling of subglacial drainage and erosion. DPhil thesis, Oxford University Google Scholar
  72. Nicolas A (1986) A melt extraction model based on structural studies in mantle peridotites. J Pet 27:999–1022 Google Scholar
  73. Noble B (1988) Methods based on the Wiener–Hopf technique, 2nd (unaltered) edn. Chelsea, New York MATHGoogle Scholar
  74. Nockolds SR, O’B Knox RW, Chinner GA (1978) Petrology for students. Cambridge University Press, Cambridge Google Scholar
  75. Nye JF (1967) Theory of regelation. Philos Mag Ser 8 16(144):1249–1266 Google Scholar
  76. Parsons I (ed) (1987) Origins of igneous layering. NATO ASI series C, vol 196. Reidel, Dordrecht Google Scholar
  77. Petford N, Lister JR, Kerr RC (1994) The ascent of felsic magmas in dykes. Lithos 32:161–168 CrossRefGoogle Scholar
  78. Pitcher WS (1997) The nature and origin of granite, 2nd edn. Chapman and Hall, London Google Scholar
  79. Richardson CN, Lister JR, McKenzie D (1996) Melt conduits in a viscous porous matrix. J Geophys Res 101:20423–20432 CrossRefGoogle Scholar
  80. Ryan MP (ed) (1990) Magma transport and storage. Wiley, Chichester Google Scholar
  81. Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and planets. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  82. Schulte P et al. (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214–1218 CrossRefGoogle Scholar
  83. Scott DR, Stevenson DJ (1984) Magma solitons. Geophys Res Lett 11:1161–1164 CrossRefGoogle Scholar
  84. Scott DR, Stevenson DJ, Whitehead JA (1986) Observations of solitary waves in a viscously deformable pipe. Nature 319:759–761 CrossRefGoogle Scholar
  85. Sigurdsson H (ed) (2000) Encyclopedia of volcanoes. Academic Press, San Diego Google Scholar
  86. Sih GC (ed) (1973) Methods of analysis and solutions of crack problems. Noordhoff, Leyden MATHGoogle Scholar
  87. Sneddon IN, Lowengrub M (1969) Crack problems in the classical theory of elasticity. Wiley, New York MATHGoogle Scholar
  88. Sparks RSJ, Huppert HE, Koyaguchi T, Hallworth MA (1993) Origin of modal and rhythmic igneous layering by sedimentation in a convecting magma chamber. Nature 361:246–249 CrossRefGoogle Scholar
  89. Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, Chichester Google Scholar
  90. Spence DA, Turcotte DL (1985) Magma driven propagation of cracks. J Geophys Res 90:575–580 CrossRefGoogle Scholar
  91. Spence DA, Sharp PW, Turcotte DL (1987) Buoyancy-driven crack propagation: a mechanism for magma migration. J Fluid Mech 174:135–153 MATHCrossRefGoogle Scholar
  92. Spiegelman M, Kelemen PB, Aharonov E (2001) Causes and consequences of flow organization during melt transport: the reaction infiltration instability in compactible media. J Geophys Res 106:2061–2078 CrossRefGoogle Scholar
  93. Spohn T, Hort M, Fischer H (1988) Numerical simulation of the crystallization of multicomponent melts in thin dikes or sills. 1. The liquidus phase. J Geophys Res 93:4880–4894 CrossRefGoogle Scholar
  94. Starostin AB, Barmin AA, Melnik OE (2005) A transient model for explosive and phreatomagmatic eruptions. J Volcanol Geotherm Res 143:133–151 CrossRefGoogle Scholar
  95. Stern ME (1960) The ‘salt fountain’ and thermohaline convection. Tellus 12:172–175 CrossRefGoogle Scholar
  96. Stevenson DJ (1989) Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophys Res Lett 16:1067–1070 CrossRefGoogle Scholar
  97. Turcotte DL, Ahern JL (1978) A porous flow model for magma migration in the asthenosphere. J Geophys Res 83:767–772 CrossRefGoogle Scholar
  98. Turner JS (1973) Buoyancy effects in fluids. Cambridge University Press, Cambridge MATHGoogle Scholar
  99. Turner JS (1974) Double-diffusive phenomena. Annu Rev Fluid Mech 6:37–54 CrossRefGoogle Scholar
  100. Wager LR, Brown GM (1968) Layered igneous rocks. Oliver and Boyd, Edinburgh Google Scholar
  101. Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill, New York Google Scholar
  102. Wang Y, Merino E (1993) Oscillatory magma crystallisation by feedback between the concentrations of the reactant species and mineral growth rates. J Pet 34:369–382 Google Scholar
  103. Weertman J (1971) Velocity at which liquid-filled cracks move in the Earth’s crust or in glaciers. J Geophys Res 76:8544–8553 CrossRefGoogle Scholar
  104. Weinberg RF, Podladchikov YY (1994) Diapiric ascent of magmas through power-law crust and mantle. J Geophys Res 99:9543–9559 CrossRefGoogle Scholar
  105. Whalley PB (1987) Boiling, condensation, and gas-liquid flow. Clarendon, Oxford Google Scholar
  106. Worster MG (1997) Convection in mushy layers. Annu Rev Fluid Mech 29:91–122 MathSciNetCrossRefGoogle Scholar
  107. Worster MG (2000) Solidification of fluids. In: Batchelor GK, Moffatt HK, Worster MG (eds) Perspectives in fluid dynamics. Cambridge University Press, Cambridge, pp 393–446 Google Scholar
  108. Worster MG, Huppert HE, Sparks RSJ (1990) Convection and crystallization in magma cooled from above. Earth Planet Sci Lett 101:78–89 CrossRefGoogle Scholar
  109. Yang X-S (2008) Mathematical modelling for earth scientists. Dunedin Academic Press, Edinburgh Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.MACSI, Department of Mathematics & StatisticsUniversity of LimerickLimerickIreland

Personalised recommendations