Mantle Convection

  • Andrew Fowler
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 36)


Chapter 8 begins with a discussion of plate tectonics. Then the study of convection in the Earth’s mantle is introduced by the consideration of Rayleigh–Bénard convection with constant viscosity. Linear and nonlinear stability are discussed, and the formation of planforms, and then the boundary layer theory at high Rayleigh number is given. The model then moves to that of convection with strongly temperature-dependent viscosity, and the boundary layer theory for this is given. The introduction of a viscous yield stress allows the prediction of subduction, and a discussion of tectonics on Venus concludes the chapter.


Rayleigh Number Thermal Boundary Layer Plate Tectonic Boussinesq Equation Mantle Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson DL (2007) New theory of the Earth. Cambridge University Press, Cambridge Google Scholar
  2. Balmforth NJ, Provenzale A, Whitehead JA (2001) The language of pattern and form. In: Balmforth NJ, Provenzale A (eds) Geomorphological fluid mechanics. Springer, Berlin, pp 3–33 CrossRefGoogle Scholar
  3. Bercovici D (1993) A simple model of plate generation from mantle flow. Geophys J Int 114:635–650 CrossRefGoogle Scholar
  4. Bercovici D (2003) The generation of plate tectonics from mantle convection. Earth Planet Sci Lett 205:107–121 CrossRefGoogle Scholar
  5. Bercovici D (ed) (2009a) Mantle dynamics. Treatise on geophysics, vol 7. Elsevier, Amsterdam Google Scholar
  6. Bercovici D (2009b) Mantle dynamics past, present and future: an introduction and overview. In: Bercovici D (ed) Mantle dynamics. Treatise on geophysics, vol 7. Elsevier, Amsterdam, pp 1–30 CrossRefGoogle Scholar
  7. Busse FH (1985) Transition to turbulence in Rayleigh–Bénard convection. In: Swinney HL, Gollub JP (eds) Hydrodynamic instabilities and the transition to turbulence, 2nd edn. Topics in applied physics, vol 45. Springer, Berlin Google Scholar
  8. Cadbury D (2000) The dinosaur hunters. Fourth estate, London Google Scholar
  9. Cathles LM (1975) The viscosity of the Earth’s mantle. Princeton University Press, Princeton Google Scholar
  10. Chandrasekhar S (1981) Hydrodynamic and hydromagnetic stability. Dover, New York Google Scholar
  11. Christensen UR (1984a) Heat transport by variable viscosity convection and implications for the Earth’s thermal evolution. Phys Earth Planet Inter 35:264–282 CrossRefGoogle Scholar
  12. Christensen UR (1984b) Convection with pressure- and temperature-dependent non-Newtonian rheology. Geophys J R Astron Soc 77:343–384 Google Scholar
  13. Christensen UR (1985) Heat transport by variable viscosity convection. II: pressure influence, non-Newtonian rheology and decaying heat sources. Phys Earth Planet Inter 37:183–205 CrossRefGoogle Scholar
  14. Christensen U, Harder H (1991) Three-dimensional convection with variable viscosity. Geophys J Int 104:213–226 CrossRefGoogle Scholar
  15. Christensen UR, Yuen DA (1984) The interaction of a subducting lithospheric slab with a chemical or phase-boundary. J Geophys Res 89:4389–4402 CrossRefGoogle Scholar
  16. Christensen UR, Yuen DA (1985) Layered convection induced by phase transitions. J Geophys Res 90:10291–10300 CrossRefGoogle Scholar
  17. Courtillot V (1999) Evolutionary catastrophes: the science of mass extinction (transl J McClinton). Cambridge University Press, Cambridge Google Scholar
  18. Davies GF (1999) Dynamic Earth: plates, plumes and mantle convection. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  19. Davies JH, Davies DR (2010) Earth’s surface heat flux. Solid Earth 1:5–24 CrossRefGoogle Scholar
  20. Fowler AC (1983) On the thermal state of the earth’s mantle. J Geophys 53:42–51 Google Scholar
  21. Fowler AC (1985a) Fast thermoviscous convection. Stud Appl Math 72:189–219 MATHMathSciNetGoogle Scholar
  22. Fowler AC (1992b) Convection and chaos. In: Yuen DA (ed) Chaotic processes in the geological sciences. Springer, New York, pp 43–69 Google Scholar
  23. Fowler AC (1993a) Towards a description of convection with temperature and pressure dependent viscosity. Stud Appl Math 88:113–139 MATHMathSciNetGoogle Scholar
  24. Fowler AC (1993b) Boundary layer theory and subduction. J Geophys Res 98:21997–22005 CrossRefGoogle Scholar
  25. Fowler AC, McGuinness MJ (1982) A description of the Lorenz attractor at high Prandtl number. Physica D 5:149–182 MATHCrossRefMathSciNetGoogle Scholar
  26. Fowler AC, O’Brien SBG (1996) A mechanism for episodic subduction on Venus. J Geophys Res 101:4755–4763 CrossRefGoogle Scholar
  27. Fowler AC, O’Brien SBG (2003) Lithospheric failure on Venus. Proc R Soc Lond A 459:2663–2704 MATHCrossRefMathSciNetGoogle Scholar
  28. Holmes A (1978) Principles of physical geology, 3rd edn, revised by Doris Holmes. Wiley, New York Google Scholar
  29. Howard LN (1966) Convection at high Rayleigh number. In: Görtler H (ed) Proc 11th int cong appl mech. Springer, Berlin, pp 1109–1115 Google Scholar
  30. Jarvis GT, McKenzie D (1982) Mantle convection as a boundary layer phenomenon. Geophys J R Astron Soc 68:389–427 MATHGoogle Scholar
  31. Jaupart C, Labrosse S, Mareschal J-C (2009) Temperatures, heat and energy in the mantle of the Earth. In: Bercovici D (ed) Mantle dynamics. Treatise on geophysics, vol 7. Elsevier, Amsterdam, pp 253–303 CrossRefGoogle Scholar
  32. Jimenez J, Zufiria JA (1987) A boundary layer analysis of Rayleigh-Bénard convection at large Rayleigh number. J Fluid Mech 178:53–71 MATHCrossRefGoogle Scholar
  33. Knittle E, Jeanloz R (1991) Earth’s core–mantle boundary: results of experiments at high pressures and temperatures. Science 251:1438–1443 CrossRefGoogle Scholar
  34. Koestler A (1964) The sleepwalkers. Penguin Books, London Google Scholar
  35. Le Grand HE (1988) Drifting continents and shifting theories. Cambridge University Press, Cambridge Google Scholar
  36. Lorenz EN (1963) Deterministic non-periodic flow. J Atmos Sci 20:130–141 CrossRefGoogle Scholar
  37. Malkus WVR, Veronis G (1958) Finite amplitude cellular convection. J Fluid Mech 4:225–260 MATHCrossRefMathSciNetGoogle Scholar
  38. Matson LE (2007) The Malkus–Lorenz water wheel revisited. Am J Phys 75:1114–1122 CrossRefGoogle Scholar
  39. McCoy RM (2006) Ending in ice: the revolutionary idea and tragic expedition of Alfred Wegener. Oxford University Press, Oxford Google Scholar
  40. Moore DR, Weiss NO (1973) Two-dimensional Rayleigh-Bénard convection. J Fluid Mech 58:289–312 MATHCrossRefGoogle Scholar
  41. Moresi L-N, Solomatov VS (1995) Numerical investigation of 2D convection with extremely large viscosity variations. Phys Fluids 7:2154–2162 MATHCrossRefGoogle Scholar
  42. Moresi L-N, Solomatov VS (1998) Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys J Int 133:669–682 CrossRefGoogle Scholar
  43. Morris S, Canright D (1984) A boundary layer analysis of Bénard convection in a fluid of strongly temperature-dependent viscosity. Phys Earth Planet Inter 29:320–329 Google Scholar
  44. Nataf H-C, Richter FM (1982) Convection experiments in fluids with highly temperature-dependent viscosity and the thermal evolution of the planets. Phys Earth Planet Inter 29:320–329 CrossRefGoogle Scholar
  45. Newell AC, Whitehead JA (1969) Finite bandwidth, finite amplitude convection. J Fluid Mech 38:279–303 MATHCrossRefGoogle Scholar
  46. Olson P, Corcos GM (1980) A boundary layer model for mantle convection with surface plates. Geophys J R Astron Soc 62:195–219 MATHGoogle Scholar
  47. Oreskes N (1999) The rejection of continental drift. Oxford University Press, New York Google Scholar
  48. Parsons B, Sclater JG (1977) An analysis of the variation of ocean floor depth and heat flow with age. J Geophys Res 82:803–827 CrossRefGoogle Scholar
  49. Pearson JRA (1958) On convection cells induced by surface tension. J Fluid Mech 4:489–500 MATHCrossRefGoogle Scholar
  50. Pillow AF (1952) The free convection cell in two dimensions. Dept of Supply, Aeronautical Research Laboratories, Report A.79 [Dept of Mathematics, University of Queensland, St Lucia, Queensland 4067, Australia] Google Scholar
  51. Quareni F, Yuen DA, Sewell G, Christensen UR (1985) High Rayleigh number convection with strongly variable viscosity: a comparison between mean field and two-dimensional solutions. J Geophys Res 90:12633–12644 CrossRefGoogle Scholar
  52. Rayleigh, Lord (1916) On convective currents in a horizontal layer of fluid when the higher temperature is on the under side. Philos Mag 32:529–546 Google Scholar
  53. Reese CC, Solomatov VS (2002) Mean field heat transfer scaling for non-Newtonian stagnant lid convection. J Non-Newton Fluid Mech 107:39–49 MATHCrossRefGoogle Scholar
  54. Reese CC, Solomatov VS, Moresi L-N (1999) Non-Newtonian stagnant lid convection and magmatic resurfacing on Venus. Icarus 139:67–80 CrossRefGoogle Scholar
  55. Ribe NM (2009) Analytical approaches to mantle dynamics. In: Bercovici D (ed) Mantle dynamics. Treatise on geophysics, vol 7. Elsevier, Amsterdam, pp 167–226 CrossRefGoogle Scholar
  56. Roberts GO (1977) Fast viscous convection. Geophys Astrophys Fluid Dyn 8:197–233 CrossRefGoogle Scholar
  57. Roberts GO (1979) Fast viscous Bénard convection. Geophys Astrophys Fluid Dyn 12:235–272 MATHCrossRefGoogle Scholar
  58. Robinson JR (1967) Finite amplitude convection cells. J Fluid Mech 30:577–600 MATHCrossRefGoogle Scholar
  59. Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and planets. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  60. Segel LA (1969) Distant side-walls cause slow amplitude modulation of cellular convection. J Fluid Mech 38:203–224 MATHCrossRefGoogle Scholar
  61. Solomatov VS (1996) Stagnant lid convection on Venus. J Geophys Res 101:4737–4753 CrossRefGoogle Scholar
  62. Sparrow C (1982) The Lorenz equations: bifurcations, chaos, and strange attractors. Springer, New York MATHGoogle Scholar
  63. Tackley P (1998) Self-consistent generation of tectonic plates in three-dimensional mantle convection. Earth Planet Sci Lett 157:9–22 CrossRefGoogle Scholar
  64. Tackley P (2000a) Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations. 1. Pseudoplastic yielding. Geochem Geophys Geosyst 1(8):1021. doi: 10.1029/2000GC000036 CrossRefGoogle Scholar
  65. Tackley P (2000b) Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations. 2. Strain weakening and asthenosphere. Geochem Geophys Geosyst 1(8):1026. doi: 10.1029/2000GC000043 Google Scholar
  66. Tackley PJ (2009) Mantle geochemical dynamics. In: Bercovici D (ed) Mantle dynamics. Treatise on geophysics, vol 7. Elsevier, Amsterdam, pp 437–505 CrossRefGoogle Scholar
  67. Turcotte DL, Oxburgh ER (1967) Finite amplitude convection cells and continental drift. J Fluid Mech 28:29–42 MATHCrossRefGoogle Scholar
  68. Wegener A (1966) The origin of continents and oceans, 4th edn, transl J Biram. Dover, New York Google Scholar
  69. Wesseling P (1969) Laminar convection cells at high Rayleigh number. J Fluid Mech 36:625–637 MATHCrossRefGoogle Scholar
  70. Winchester S (2001) The map that changed the world. Viking, Penguin Books, London Google Scholar
  71. Yuen DA, Maruyama S, Karato S-I, Windley BF (eds) (2007) Superplumes: beyond plate tectonics. Springer, Dordrecht Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.MACSI, Department of Mathematics & StatisticsUniversity of LimerickLimerickIreland

Personalised recommendations